

### **THE DESIGN CYCLE**

3 SEPT 2015



www.paulos.net

UNIVERSITY OF CALIFORNIA



## ANNOUNCEMENTS

Due Next Thur- Reading Response

Due 10 Sept (before class) – DESIGN 01

Due 11 Sept (Fri) – PROG 01

Enrollment

Late reading responses

Attendance

Screen Record PROG 01

What Section will you Attend?

### **SECTIONS MOVING FORWARD**

- 101 2-3pm 405 Soda
- 102 3-4pm 405 Soda
- 103 4 5pm 405 Soda CANCEL
- 104 5 6pm 405 Soda CANCEL
- 105 10-11 am B1 Hearst Annex
- 106 11-12 243 Dwinelle
- 107 1-2pm 174 Barrows
- 108 2 3pm 85 Evans CANCEL

## **CLASS STUDIO ATTENDANCE**

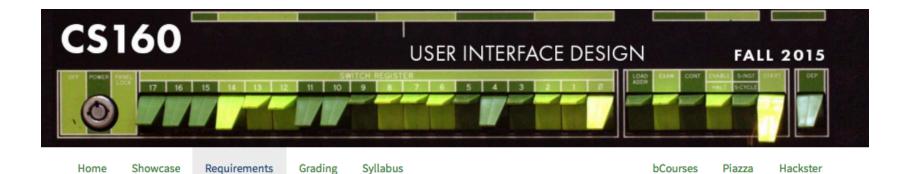
Our "class" is a <u>3 hour Studio</u> with a lunch break Missing any part of the Studio is equivalent to missing class (AM+PM=Studio)

The required 8 classes are:

26 Aug 27 Aug - Section 24 Sept 22 Oct 29 Oct 05 Nov 12 Nov 19 Nov

and 10 Dec the Final Critique of course....




### **RR GRADING GUIDELINES**

Convince us that you have carefully thought about the assigned reading

Scale:

- Exceptional (3)
- Adequate (2)
- Lacking (1)
- No answer (0)

#### CLASS WEBSITE: HCI.BERKELEY.EDU/CS160



#### **Course Description**

CS160 is an introduction to Human Computer Interaction (HCI). You will learn to prototype, evaluate, and design a user interface. You will be expected to work within a group of four or five students in this projectbased course. Your project topic will be proposed by your group and your project design and implementation will follow a human-centered process. The final result will be an interactive prototype of a novel user experience carefully tailored to the needs of your intended users.

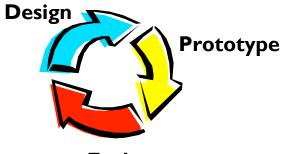
In contrast to most of the other CS classes at Berkeley, CS160 does not primarily focus on particular algorithmic techniques or computer technologies. Instead, the focus of the course is on developing a broad set of skills needed for user-centered design. These skills include ideation, needs assessment, communication, rapid prototyping, algorithmic implementation and evaluation.

#### **CS160**

| Lectures:            | Thu 10:30AM - 12:00PM and 1:00PM - 2:30PM<br>310 Jacobs Hall |
|----------------------|--------------------------------------------------------------|
| Instructor:          | Professor Eric Paulos                                        |
| Contacting GSIs:     | via Piazza                                                   |
| Midterm Exam:        | TBA                                                          |
| Final Presentations: | TBA                                                          |

#### **Course Staff**

🕑 Office Hour


Continent Continent

### REVIEW

#### Course overview

Project theme

#### Course mechanics



#### **Evaluate**





Home Showcase Requirements Grading Syllabus

bCourses Piazza Hackster

#### **Course Description**

CS160 is an introduction to Human Computer Interaction (HCI). You will learn to prototype, evaluate, and design a user interface. You will be expected to work within a group of four or five students in this projectbased course. Your project topic will be proposed by your group and your project design and implementation will follow a human centred process. The final result will be an interactive prototype of a novel user experience carefully tailored to the needs of your interded user.

In contrast to most of the other CS classes at Berkeley, CS160 does not primarily focus on particular algorithmic techniques or computer

#### CS160

Lectures: Thu 10.30AM - 12:00PM and 1:00PM - 2:30PM 30 Jacobs Hall Professor Eric Paulos Contacting GSIs: Va Piazza Midtern Exam: TBA Final Presentations: TBA

- --

### DUE THURSDAY: NEXT READING RESPONSE

Due Thursday, before class

Respond to reading

Will be graded

| R 02                                                                                                                                                        | Publish              | 💉 Edi    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| READING REQUIRING A RESPONSE:                                                                                                                               |                      |          |
| Read: The Design of Everyday Things. by Norman. Read Chapter 1, "THE PSYCHOPATHOLOG                                                                         | Y OF EVERYDAY TH     | INGS"    |
| The-Design-of-Everyday-Things-Chap01.pdf <u> </u> 같                                                                                                         |                      |          |
| Prompt:                                                                                                                                                     |                      |          |
| Look carefully at your current mobile phone. Point out and briefly discuss three designs elemer<br>affordances.                                             | nts you can identify | that are |
| OTHER REQUIRED READINGS:                                                                                                                                    |                      |          |
| Read: Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human-Computer 44-54 (Interface Metaphors) and pp 86-96 (Cognitive Frameworks) | Interaction (3rd ed. | ed.), pp |
| Interaction Design Interaction Frameworks NEW.pdf 📓 🖉                                                                                                       |                      |          |
| Interaction Design Cognitive Frameworks.pdf 🔯 🖉                                                                                                             |                      |          |

### DESIGN 01: WATCH IN THE WILD: DUE 10 SEP

The goal of this assignment is to introduce you to iterative design.

That way, during the main course project, the steps of the design process will be more familiar.

You will

observe and interview users

brainstorm

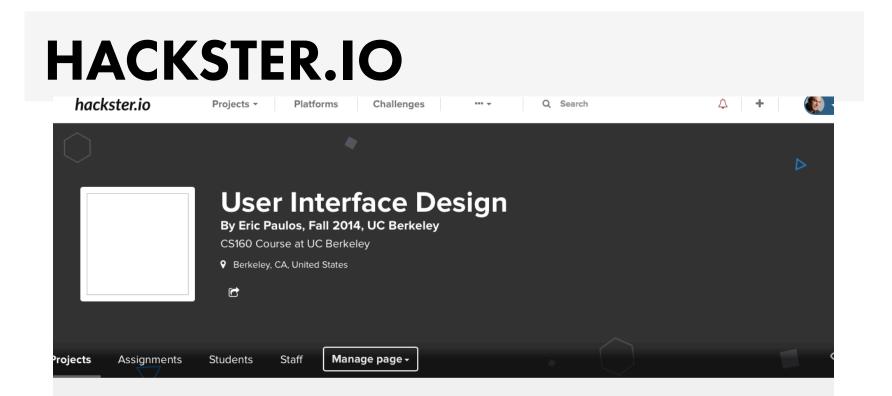
prototype

get feedback

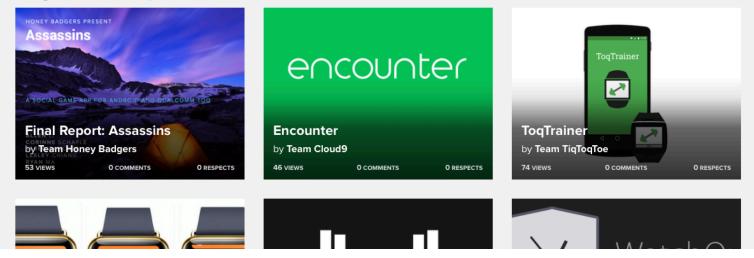
## **DESIGN EXERCISE**

The point is NOT to implement one of the examples listed in the assignment

- Talk to and observe 2 people
- Brainstorm at least 12 ideas go for breadth (radically different ideas)
- pick "the best" idea
- prototype
- Evaluate it get feedback from users


# DESIGN EXERCISE (GRADING)

- Did you talk to at least two target users who are not college students? (4pts)
- Did you upload photos that document your interviews? (3pts)
- Did you succinctly and clearly describe what you learned from your conversations? (3pts)
- Did you brainstorm at least 12 ideas? (5pts)
- Did you make a prototype and describe it in your submission (w/ photos)? (5pts)
- Did you test your prototype with a user? (5pts)
- Did you write down a list of insights from the test? (5pts)


### HACKSTER.IO

| hackster.io                   | Projects - Platforms     | Challenges              | •••• <del>•</del> | Q Search |      | $\bigtriangleup$ | +         |
|-------------------------------|--------------------------|-------------------------|-------------------|----------|------|------------------|-----------|
| digital equipment corporation | maynard massachusetts    |                         |                   |          |      |                  |           |
|                               |                          |                         |                   |          |      |                  |           |
|                               |                          |                         |                   |          |      |                  |           |
|                               | User Inter               | face Desi               | an                |          |      |                  |           |
| POWER FORWARD REVERSE REWIND  | By Eric Paulos, Fall 201 |                         | 5                 |          |      | RUN              | BUS       |
| WRITE READ 200 556 800        | CS160 Course at UC Berke | ley                     |                   |          |      |                  |           |
| NUSAD LOAD READY START        | Berkeley, United States  | DATA                    |                   |          |      | SOURCE           | DESTINAT  |
| ¥¥                            | C                        |                         |                   |          |      |                  |           |
|                               |                          |                         |                   |          |      |                  |           |
| POWER PANEL                   | SWIT                     | CH REGISTER             |                   |          | LOAD | EXAM CONT        | ENABLE SA |
| Projects Assignments          | s Students Staff M       | anage page <del>-</del> |                   | 2 1 0    | AUUA |                  | RALT      |
|                               |                          |                         | ST AND            |          |      |                  |           |

All student projects will appear here.



#### Assignment: Final Report



#### HACKSTER

You will be invited to join Hackster (and our class) You will make projects (assignments) You will submit them to the Assignment (attach) Keep working until the deadline Locks at deadline Staff can see and grade even if private Please make public after grading

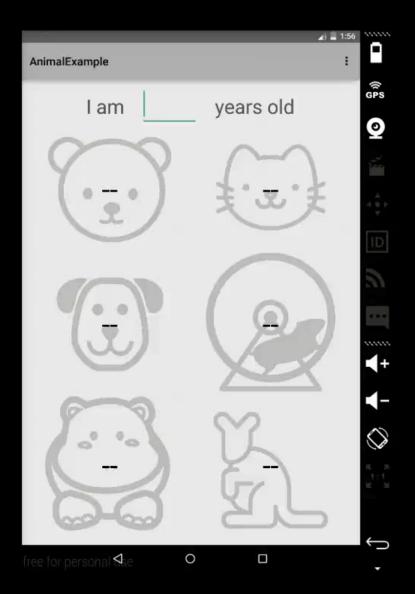
### PROG 01: YOU ANIMAL: DUE 11 SEP

#### PROG 01: You Animal



In your first assignment you will learn how to:

- Install the Android SDK and developer tools
- Start programming with the Android SDK
- · Build a simple Android application and test it in the emulator


You will build an animal years app

You know how it goes. You're having coffee with your friends when suddenly the age old debate breaks out -"So how old are you in hippopotamus years?" Luckily, you have your trusty **You Animal** converter app that you built in CS160. You can enter your current age (in human years) and automatically be given your age if you were a dog, cat, kangaroo, or even hippopotamus.

You will submit your source code, the executable, screenshots and a narrated video. It is your responsibility to ensure that the executable has all the resources it needs to execute.

#### Instructions

1. Choose a development machine: You should be able to do development on your own laptop and we



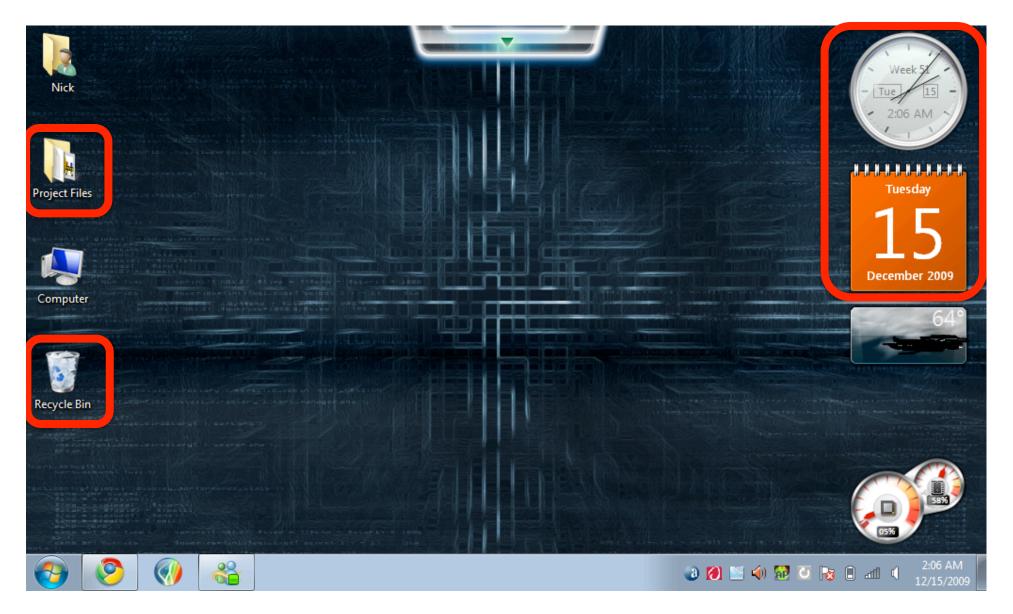
Screencast-O-Matic.com

#### **HELP WITH PROGRAMMING ASSIGNMENT**

Office Hours

Sections

#### Recommended:


Follow the official Android tutorials Building Your First App



### LOOKING AT INTERACTION DESIGNS



http://stackoverflow.com/questions/238177



Windows 7 - http://i47.tinypic.com/2zp1kzt.jpg

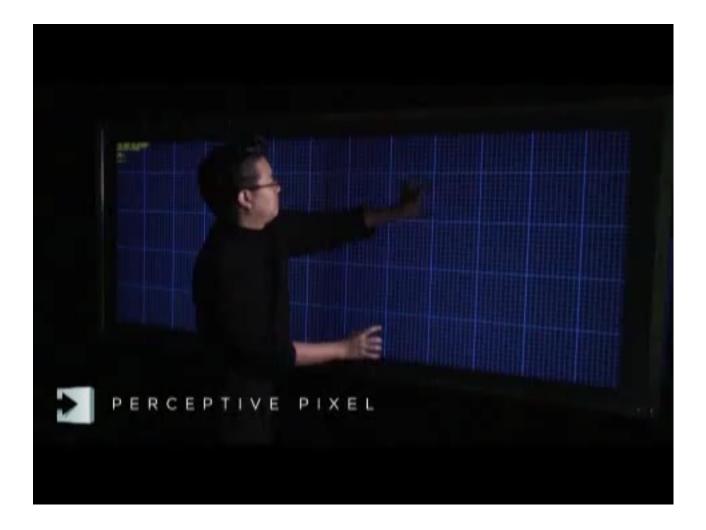
### THE OFFICE SCHEMATIC...



### THE DESKTOP METAPHOR...

http://www.designinginteractions.com/interviews/TimMott

### THE DESKTOP METAPHOR...

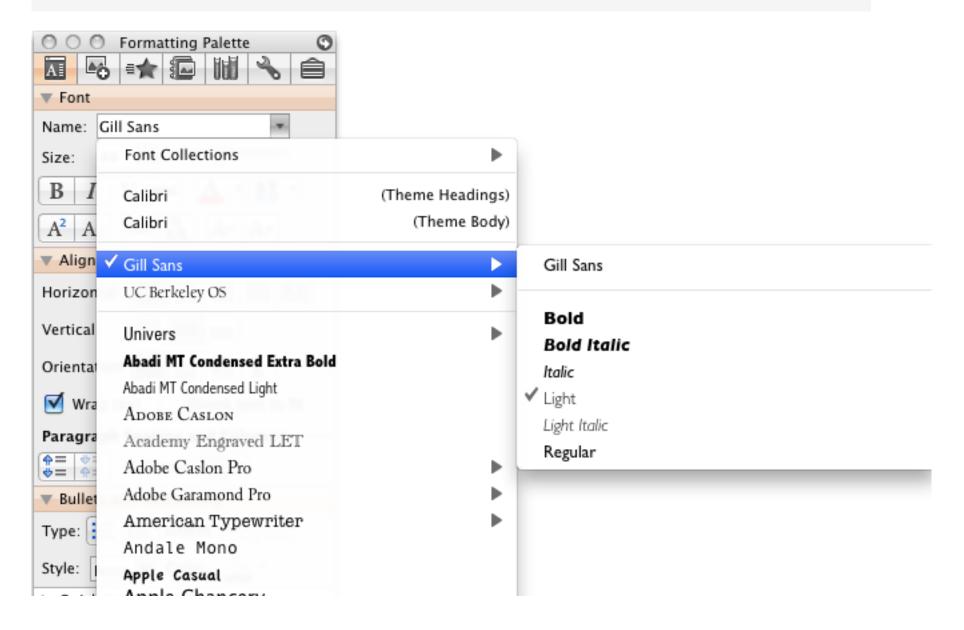



### **IS THIS A GOOD IDEA? WHEN?**



http://www.bumptop.com

### **HOW ABOUT THIS?**




Jeff Han, Perceptive Pixel

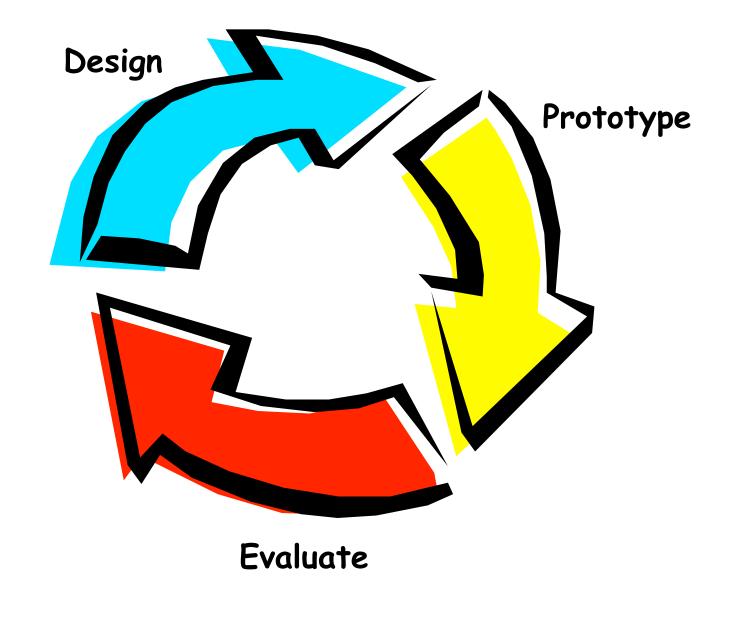
### FONT SELECTION IN KEYNOTE

| F    |                               | Format |
|------|-------------------------------|--------|
|      | Свторого вишар                |        |
|      | Geeza Pro                     |        |
|      | Geneva                        |        |
| ð -  | Geneva CY                     |        |
|      | Georgia                       |        |
| nt   | Giddyup Std                   |        |
| - V  | Gill Sans                     | \$ 64  |
|      | Gill Sans MT                  |        |
|      | Gill Sans Ultra Bold          |        |
|      | Gloucester MT Extra Condensed |        |
| C    | Goudy Old Style               |        |
| 0    | Gujarati MT                   |        |
|      | Gulim                         |        |
|      | GungSeo                       |        |
| 0.0  | Gurmukhi MT                   |        |
|      | Haettenschweiler              |        |
|      | Handwriting – Dakota          |        |
|      | Harrington                    |        |
|      | HeadLineA                     |        |
|      | Hei                           |        |
|      | Heiti SC                      |        |
|      | Heiti TC                      |        |
|      | Helvetica                     |        |
| terf | Helvetica CY                  |        |
| _    | Helvetica Neue                |        |
| ains | Herculanum                    |        |
|      | Hiragino Kaku Gothic Pro      |        |
|      | Hiragino Kaku Gothic ProN     |        |
|      | Hiragino Kaku Gothic Std      |        |
|      | Hiragino Kaku Gothic StdN     |        |
|      | Hiragino Maru Gothic Pro      |        |
|      | Hiragino Maru Gothic ProN     |        |

### FONT SELECTION IN POWERPOINT



### **TOPICS FOR TODAY**

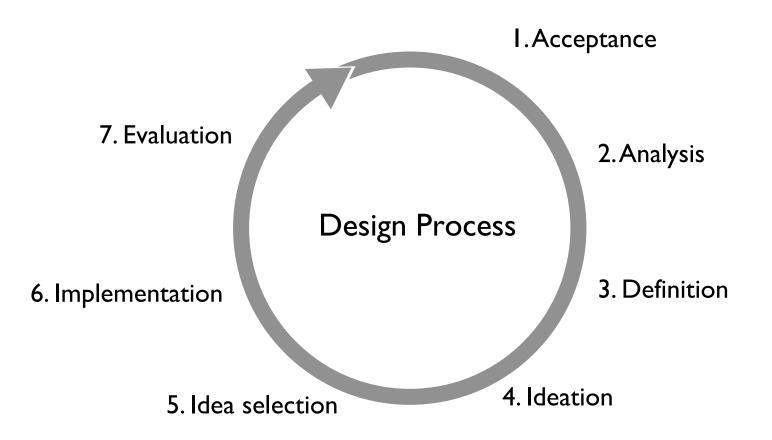

THE DESIGN CYCLE

BRAINSTORMING

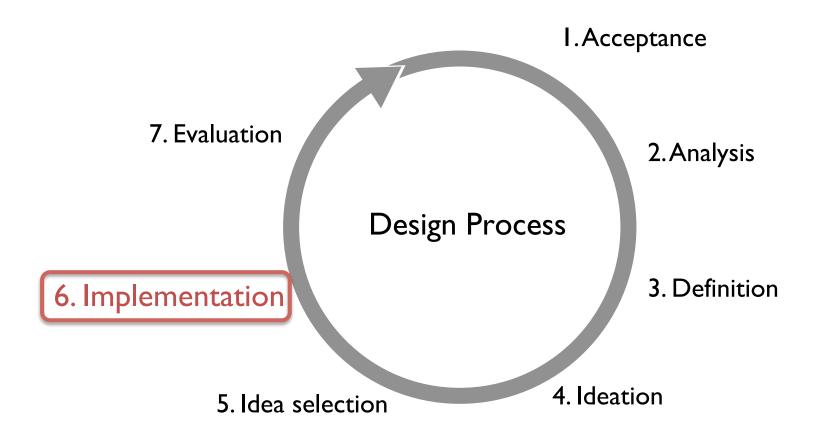
CRITIQUE



### THE DESIGN CYCLE




### THE ART OF UI DESIGN




A soufflé is eggs, butter, milk & flour, but the difference between soaring and sinking is in the execution.

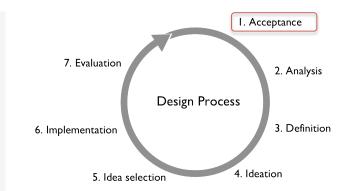
# THE DESIGN PROCESS [KOBERG & BAGNALL]



# THE DESIGN PROCESS [KOBERG & BAGNALL]



# ACCEPTANCE


#### Getting started

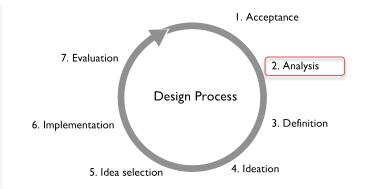
Because of a deadline Because of possible reward Because you are forced to

#### Commitment

Time Resources Responsibility

Key is to set motivation




### ANALYSIS

#### Understand Users and Tasks

Who are the users? What are their tasks? Observe and test, don't guess

#### Tools

Notebook Smartphone: audio + video recorder still camera





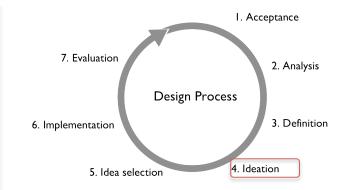
# DEFINITION

### Focus on the problem Choose appropriate level of detail

Not "bicycle cup-holders"

...but

"helping cyclists to drink coffee without accidents"




# **IDEATION**

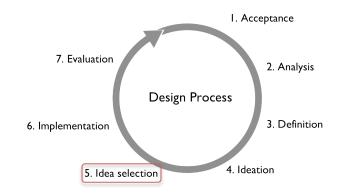
### Brainstorming

Stretch mental muscles Loosen up with simple games Do homework Seed with related ideas/objects Get physical Sketch Make models Act out **IDEO** rules One conversation at a time Stay focused Encourage wild ideas Defer judgment Build upon idea from others

### Aim for quantity!



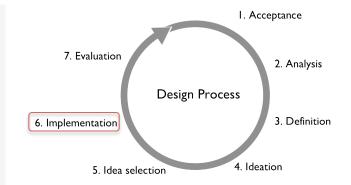
# **IDEA SELECTION**


### Define importance of each idea

Does it address problem Will target users like it Is hardware available Is software available What is the cost Market window

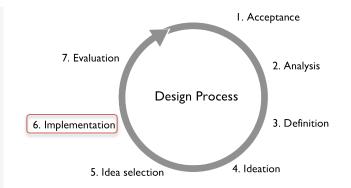
. . .

# Rank ideas according the your criteria


Pick top N Choices depend on resources and stage of the project



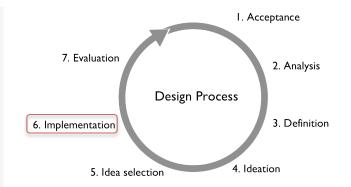
### Scale up low $\rightarrow$ high fidelity




Scale up low → high fidelity Low-fidelity (quick, cheap, dirty) sketches, paper models, foam core, ...



Scale up low → high fidelity Low-fidelity (quick, cheap, dirty) sketches, paper models, foam core, ...


Medium fidelity (slower, more expensive) JavaScript, Framer, ...

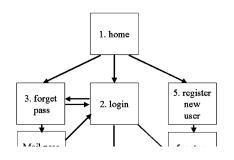


Scale up low → high fidelity Low-fidelity (quick, cheap, dirty) sketches, paper models, foam core, ...

Medium fidelity (slower, more expensive) JavaScript, Framer, ...

High fidelity (slowest, most expensive) The full interface




### **IMPLEMENTATION EXAMPLE: WEB DESIGN**



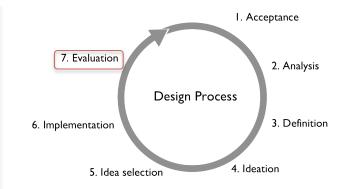


### Site Maps $\rightarrow$ Storyboards $\rightarrow$ Schematics $\rightarrow$ Mock-ups





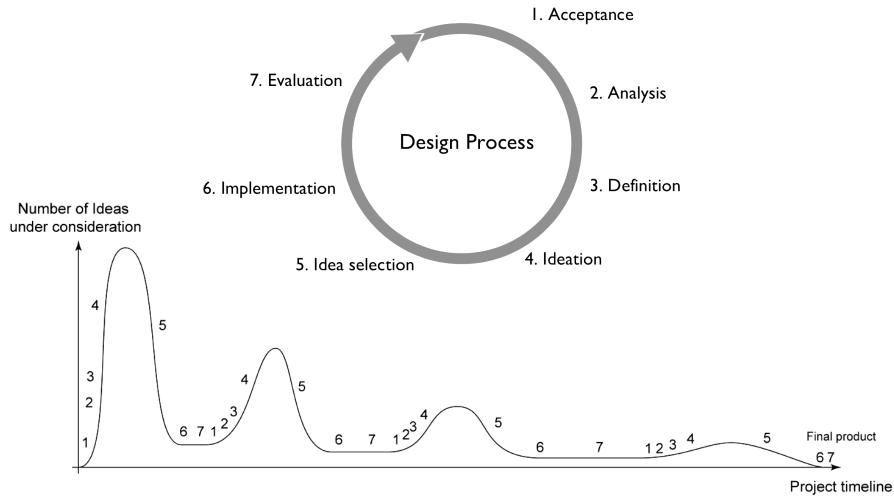




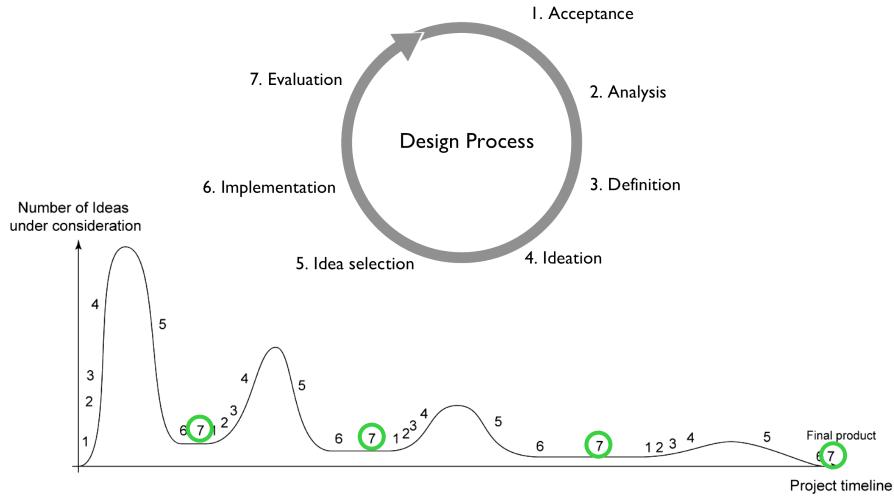



# **EVALUATION**

Many types of evaluation: Prototype walkthroughs Think-aloud studies Wizard-of-Oz Performance comparisons

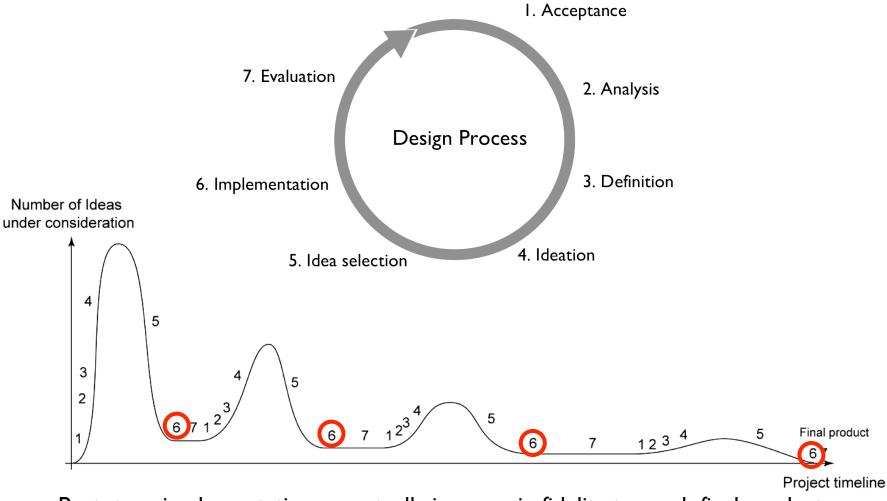

Type of evaluation chosen depends on the level of implementation, etc.




### EVALUATION EXAMPLE: PAPER PROTOTYPE WALKTHROUGH



# DESIGN CYCLE OVER PROJECT LIFESPAN




# DESIGN CYCLE OVER PROJECT LIFESPAN



Evaluation reveals problems with design. Re-design requires cycling the process.

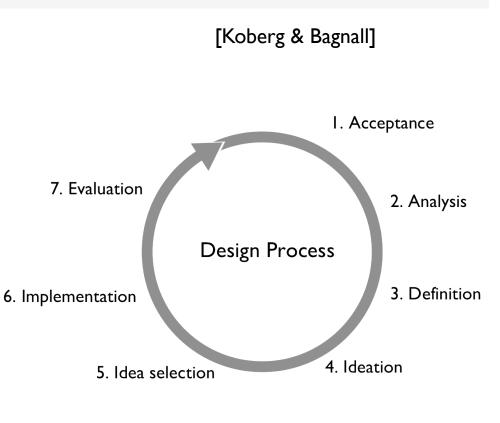
# DESIGN CYCLE OVER PROJECT LIFESPAN

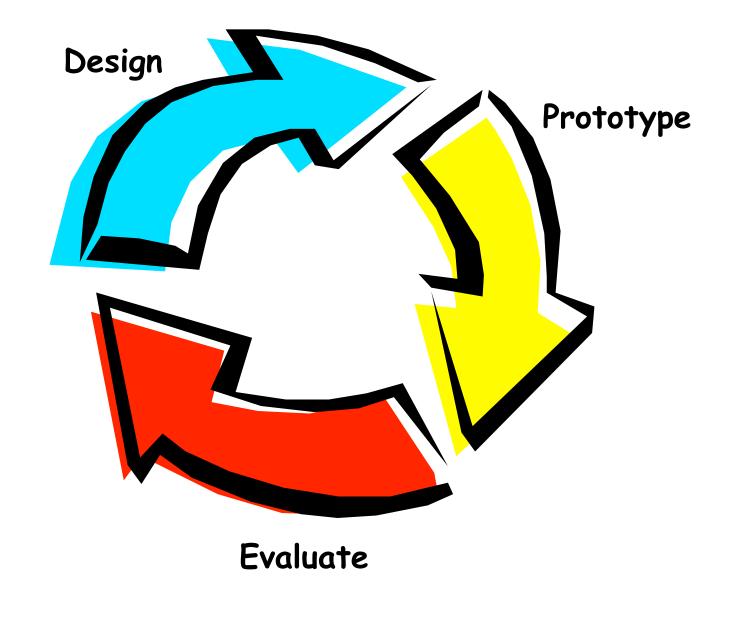


Prototype implementations eventually increase in fidelity to reach final product

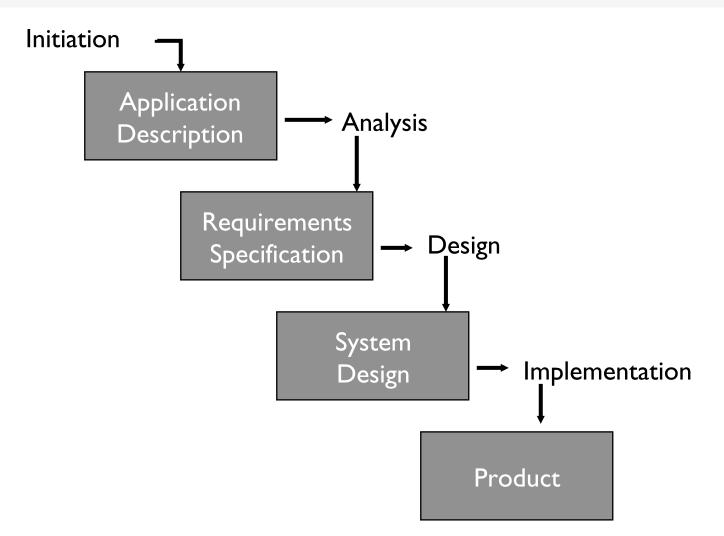
# COMPARISON

[Lewis & Rieman]


Who will use? What are their tasks? Plagiarize Rough out a design Think about design Create a prototype Test it with users Iterate Build a production version Track use Evolve the design


# [Koberg & Bagnall] I. Acceptance 7. Evaluation Design Process 6. Implementation 5. Idea selection

# COMPARISON


[Lewis & Rieman]

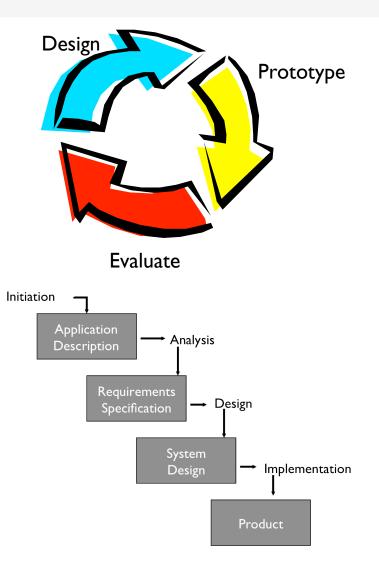
Who will use? [2] What are their tasks? [2] Plagiarize [4] Rough out a design [4,6]Think about design [5] Create a prototype [6] Test it with users [7] Iterate [7->1]Build a prod. version [6] Track use [7] Evolve the design [7->1]





# WATERFALL MODEL (SOFT. ENG.)

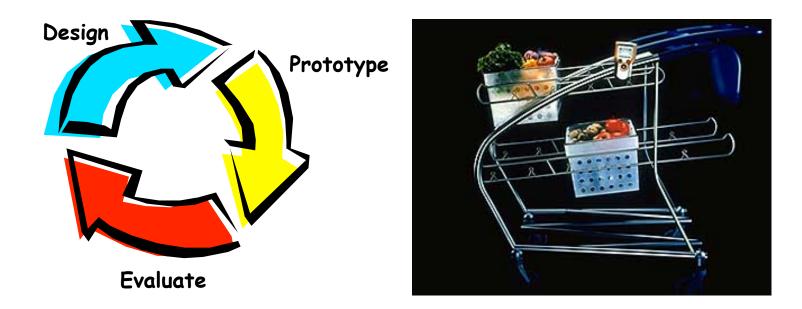



# COMPARISON

### Focus differs

WF has no feedback High cost of fixing errors: increases by 10x at each stage

Iterative design finds problems earlier


True for modern web applications?





## **BRAINSTORMING AND CRITIQUE**

# **VIDEO: THE DEEP DIVE**



How well do they follow the cycle? What do they do for each step of the cycle? How many cycles do you think they went through?



# BRAINSTORMING



www.paulos.net

UNIVERSITY OF CALIFORNIA



# THE PSYCHOLOGY OF CREATIVITY

Conformity: the enemy of creativity

Groups and organizations encourage conformity





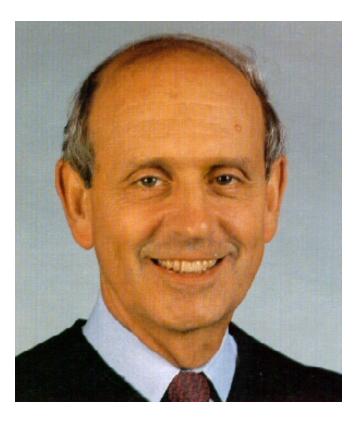

Part of "brand" or "corporate identity"

# THE PSYCHOLOGY OF CREATIVITY

Pressure to conform affects judgment and perception:

The emperor's new clothes McCarthyism: if you're not one of us, you're one of them...

People in minority will adopt majority opinion and even manufacture their own explanation of it.




# **CREATIVITY AND DISSENT**

Authentic dissenters – people who really disagree with group – can enhance group creativity

Their opinion needn't be right – but they can free the group from stagnant thinking.

The originality of the minority stimulates the majority




# **CREATIVITY AND DISSENT**

Authentic dissenters – people who really disagree with group – can enhance group creativity

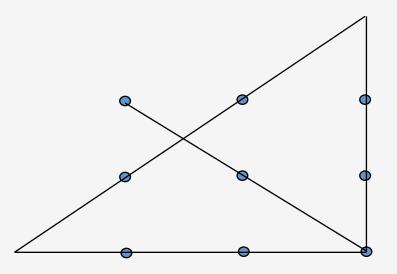
Their opinion needn't be right – but they can free the group from stagnant thinking.

The originality of the minority stimulates the majority



# **DISSENT AND AUTHENTICITY**

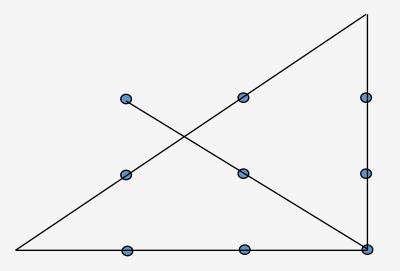
### The benefits of dissent are weakened if


Dissent is not real: A deliberate "devil's advocate" in the group can actually stifle dissent, because the majority know the opinion is manufactured.

Dissent is not encouraged: Polite or pro-forma acceptance is not enough.

# **ENHANCING CREATIVITY**

Thinking outside the box:


Draw a series of 4 straight lines through all the points below, without lifting pen from paper:



# WHY IS THIS HARD?

### We adopt expectations about the solution Based on conventions

Based on what we believe the questioner expects



# **IDEO'S BRAINSTORMING RULES**

- 1. Sharpen the Focus
- 2. Playful Rules
- 3. Number your Ideas
- 4. Build and Jump
- 5. The Space Remembers
- 6. Stretch Your Mental Muscles
- 7. Get Physical

# Aim for quantity

Hope for quality





# **SHARPEN THE FOCUS**

Posing the right problem is critical – neither too narrow, nor too fuzzy

Not "bicycle cup-holders" but "helping cyclists to drink coffee without accidents"



# **NUMBER YOUR IDEAS**

Obvious but very useful

Helps keep track of them when the brainstorm is successful (and 100 or more ideas are in play)

Allows ideas to take on an identity of their own

# **BUILD AND JUMP**

Build to keep momentum on an idea:

"shock absorbers are a great idea; what are other ways to reduce coffee spillage on bumps?"

Jump to regain momentum when a theme tapers out: "OK, but what about hands-free solutions?"

# **CONCEPT REFINEMENT**

Premature idea rejection is a serious barrier to good design.

One big differentiator between good designers and great ones is the latter's ability to successfully develop unusual ideas


This requires a strong instinct to be able to distinguish fatal vs. minor flaws in an idea

# THE SPACE REMEMBERS

Covering whiteboards or papering walls with text is extremely useful in group work.

It's a very effective form of external (RAM) memory for group

Even better, its shared RAM. Helps group share understanding





# STRETCH YOUR MENTAL MUSCLES

Warm-ups: word games, puzzles

Get immersed in the domain: go visit the toy shop, or the bicycle shop, phone shop etc...

**Props:** Bring some examples of the technology to the brainstorm



# **GET PHYSICAL**

Sketch

Make models

Act out



Moggridge, Designing Interactions, p.732

Online discussion and Web address information given during this program may no longer be accurate.

ABC has left these references intact to preserve the integrity of this program.