

USABILITY TESTING

15 Oct 2014

www.paulos.net

UNIVERSITY OF CALIFORNIA

ANNOUNCEMENTS

- PROG 02 Due Friday (Midnight) :: A month since assigned...
- DESIGN 04 Due Friday Your project! Be bold!
- DESIGN 05 Contextual Inquiry, Task Analysis,
- Competitive Analysis Due 30 Oct Plan ahead (after midterm)
- Midterm review in Section
- No AM Class next Thur
- Midterm next Thur 1:10 2:30

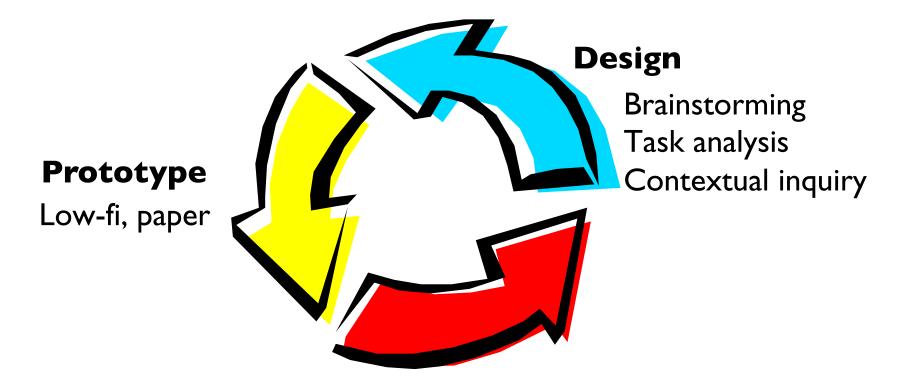
MIDTERM ON 22 OCT

In class – Actually in Sibley Auditorium Watch Piazza for details 80 minutes Closed book & notes Review on Friday 16 Oct in Section If you are registered with the DSP office and have special needs, you should received email from us about exam accommodations.

MIDTERM ON 22 OCT

All lecture material, slides, and readings.

Short answer Multiple Choice True / False Longer descriptions for some


No coding questions

If you find a question ambiguous, document the ambiguity. Indicate the way you interpreted the question in a set of separate sentences next to the question. The questions on the exam are not intended to be ambiguous, but sometimes another meaning is interpreted by the examinee that we did not take into consideration.

USABILITY TESTING METHODS

ITERATIVE DESIGN

Evaluate

Low-fi testing, Qualitative eval Quantitative eval

GENRES OF ASSESSMENT

Automated Usability measures computed by software

Inspection Based on skills, and experience of evaluators

Formal Models and formulas to calculate measures

Empirical Usability assessed by testing with real users

EMPIRICAL TESTING IS COSTLY

User studies are very expensive – you need to schedule (and normally pay) many subjects.

User studies may take many hours of the evaluation team's time.

A user test can easily cost \$10k's

"DISCOUNT USABILITY" TECHNIQUES

Cheap

No special labs or equipment needed The more careful you are, the better it gets

Fast

On order of 1 day to apply (Standard usability testing may take a week)

Easy to use Can be taught in 2-4 hours

"DISCOUNT USABILITY" TECHNIQUES

Heuristic Evaluation

Assess interface based on a predetermined list of criteria

Cognitive Walkthroughs Put yourself in the shoes of a user Like a code walkthrough

Other, non-inspection techniques are on the rise e.g., online remote experiments with Mechanical Turk

COGNITIVE WALKTHROUGH

COGNITIVE WALKTHROUGH

Formalized technique for imagining user's thoughts and actions when using an interface:

"Cognitive walkthroughs involve simulating a user's problem-solving process at each step in the humancomputer dialog, checking to see if the user's goals and memory for actions can be assumed to lead to the next correct action." (Nielsen, 1992)

COGNITIVE WALKTHROUGH

Given an interface prototype or specification, need:

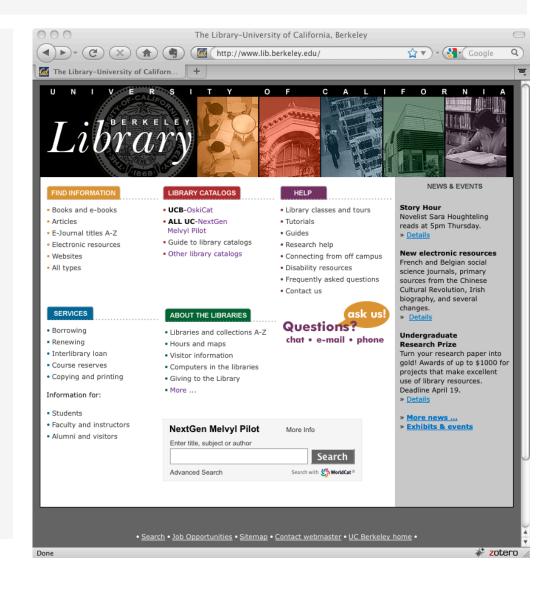
- A detailed task with a concrete goal, ideally motivated by a scenario
- Action sequences for user to complete the task

Ask the following questions for each step:

- Will the users know what to do?
- Will the user notice that the correct action is available?
- Will the user interpret the application feedback correctly?

Record: what would cause problems, and why?

Task: Find the call number and location of the latest edition of the book "Interaction Design" by Preece, Rogers & Sharp in the Berkeley library

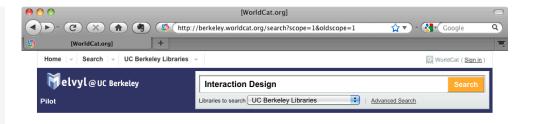

Typical users: Students who are familiar with the web, but not necessarily with the library or its website

Step1: Select library catalog.

Will the user know what to do?

Will user notice that action is available?

Will user interpret feedback correctly?



Step 2: Complete the search form

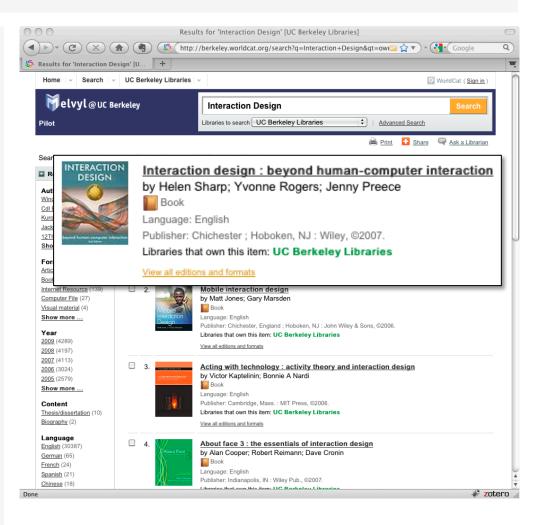
Will the user know what to do?

Will user notice that action is available?

Will user interpret feedback correctly?

anguages: <u>Deutsch</u> | English | <u>Español</u> | <u>Francais</u> | <u>Nederlands</u> | <u>中文</u> You: <u>Sign in | Register | My WorldCat</u> | <u>My Lists</u> | <u>My Watchist</u> | <u>My Reviews</u> | <u>My Tags</u> | <u>My Saved Searches</u> WorldCat: <u>Home | About | Help | Get E-mail Updates</u> | <u>Feedback</u> | <u>Search | WorldCat Blog</u> Legal: <u>Copyright© 2001-2010 OCLC. All rights reserved</u>, | <u>Privacy Policy</u> | <u>Terms and Conditions</u>

WorldCat is the world's largest library catalog, helping you find library materials online.

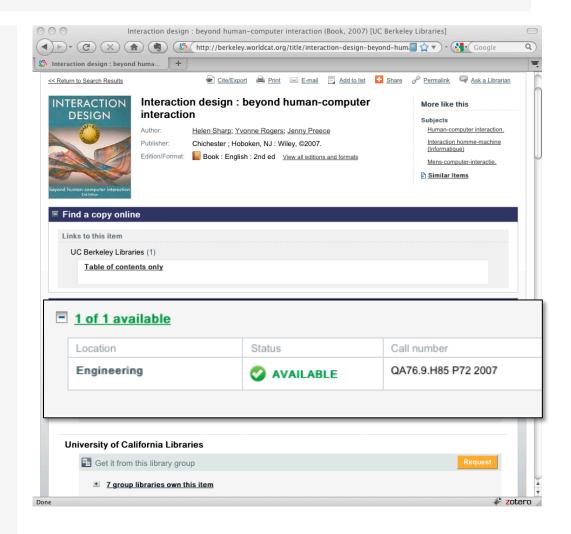

🕷 zotero

Step 3: Locate the right edition, click to detail screen

Will the user know what to do?

Will user notice that action is available?

Will user interpret feedback correctly?



Step 4: Locate call number and library location

Will the user know what to do?

Will user notice that action is available?

Will user interpret feedback correctly?

EMPIRICAL ASSESSMENT: QUALITATIVE

Qualitative: What we've been doing so far Contextual Inquiry: try to understand user's tasks and conceptual model Usability Studies: look for critical incidents in interface

Qualitative methods help us:

Understand what is going on

Look for problems

Roughly evaluate usability of interface

EMPIRICAL: QUANTITATIVE STUDIES

Quantitative

Use to reliably measure some aspect of interface Compare two or more designs on a measurable aspect Contribute to theory of Human-Computer Interaction

Approaches

Collect and analyze user events that occur in natural use Controlled experiments

Examples of measures

Time to complete a task, Average number of errors on a task, Users' ratings of an interface*

* You could argue that users' perception of speed, error rates etc is more important than their actual values

COMPARISON

Qualitative studies

Faster, less expensive \rightarrow esp. useful in early stages of design cycle

Quantitative studies

Reliable, repeatable result → scientific method Best studies produce generalizable results

DESIGNING CONTROLLED EXPERIMENTS

STEPS IN DESIGNING AN EXPERIMENT

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population
- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

EXPERIMENT DESIGN

Testable hypothesis

Precise statement of expected outcome

Independent variables (factors)

Attributes we manipulate/vary in each condition Levels – values for independent variables

Dependent variables (response variables)

Outcome of experiment (measurements) Usually measure user performance

EXPERIMENT DESIGN

Control variables

Attributes that will be fixed throughout experiment Confound – attribute that varied and was not accounted for Problem: Confound rather than independent variables could have caused change in dependent variables Confounds make it difficult/impossible to draw conclusions

Random variables

Attributes that are randomly sampled Increases generalizability

VARIABLE TYPES

Nominal: categories with labels, no order

Ordinal: categories with rank order

Continuous: interval (w/o zero point), ratio (w/ zero point)

COMMON METRICS IN HCI

Performance metrics:

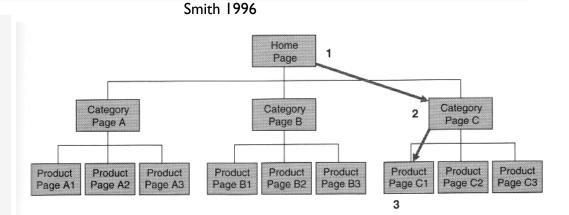
- Task success (binary or multi-level)
- Task completion time
- Errors (slips, mistakes) per task
- Efficiency (cognitive & physical effort)
- Learnability

Satisfaction metrics:

• Self-report on ease of use, frustration, etc.

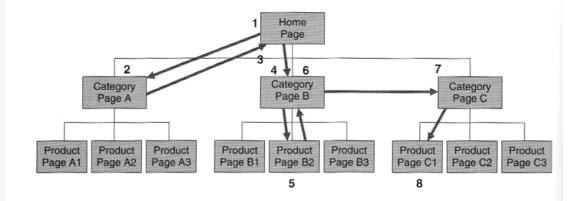
PERFORMANCE METRIC: ERRORS

OFFICIAL BALLOT, GENERAL ELECTION PALM BEACH COUNTY, FLORIDA NOVEMBER 7, 2000				PALM BEACH COUNTY, FLORIDA NOVEMBER 7, 2000		
	(REPUBLICAN) GEORGE W. BUSH - PARSIDENT DICK CHENEY - VICE PRESIDENT	3→	0	(REFORM) PAT BUCHANAN - PRESIDENT		
ELECTORS FOR PRESIDENT AND VICE PRESIDENT (A vote for the candidates will actually be a vote for their electors.) (Vote for Group)	(DEMOCRATIC) AL GORE - PRESIDENT JOE LIEBERMAN - VICE PRESIDENT	5 • • • • • • • • • •	•	EZOLA FOSTER - WICE PRESIDENT (SOCIALIST) DAVID MCREYNOLDS - PRESIDENT MARY CAL HOLLIS - VICE PRESIDENT (CONSTITUTION)		
	(LIBERTARIAN)		© ← (
	ART OLIVIER - VICE PRESIDENT (GREEN)	97				
	RALPH NADER PRESIDENT WINONA LADUKE VICE PRESIDENT (SOCIALIST WORKERS)	37	3 -1	(WORKERS WORLD) 0 MONICA MODREHEAD - PERSIDENT GLOBIA LA RIVA - VICE PERSIDENT		
	JAMES HARRIS PREDOUNT MARGARET TROWE VICE PRESIDENT	11→	2	WRITE IN CANDIDATE		
	(NATURAL LAW) JOHN HAGELIN PRESIDENT NAT GOLDHABER WICE PRESIDENT	13→	3 —	To vote for a write in candidate, follow the directions on the long stub of your ballot card.	- La	
				TURN PAGE TO CONTINUE VOTIN	G	



stcsig.org

media.tbo.com / AP


PERFORMANCE METRIC: LOSTNESS

Smith 1996: N: # of different pages visited S: # of total pages visited, incl. revisits R: minimum # of pages to accomplish task

Optimum number of steps (three) to accomplish a task that involves finding a target item on Product Page C1 starting from the homepage.

Lostness = $sqrt((N/S-1)^2+(R/N-1)^2)$

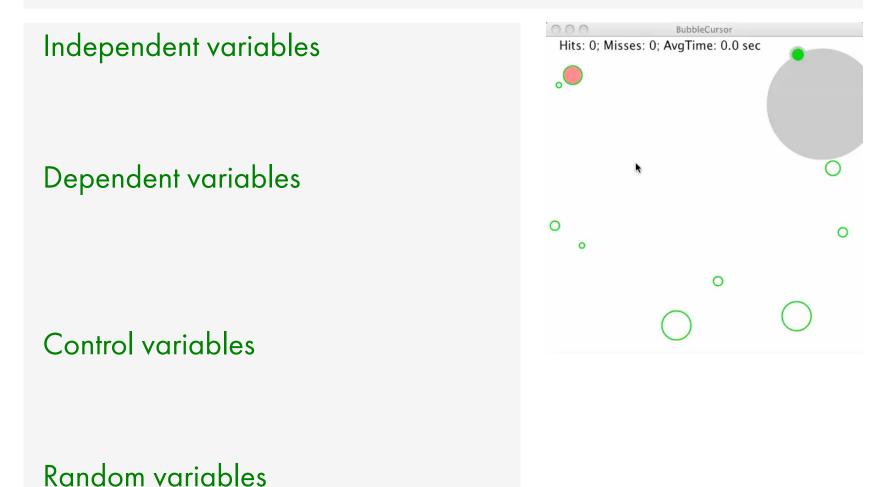
Actual number of steps a participant took in getting to the target item on Product Page C1. Note that each revisit to the same page is counted, giving a total of eight steps.

SATISFACTION METRIC: LIKERT SCALES

Respondents rate their level of agreement to a statement

Likert data is ordinal, not continuous (matters for analysis)! "Overall, I am satisfied with the ease of completing the tasks in this scenario"

- I: Strongly Disagree
- 2: Disagree
- 3: Neither agree nor disagree
- 4: Agree
- 5: Strongly agree


The Bubble Cursor: Enhancing Target Acquisition by Dynamic Resizing of the Cursor's Activation Area

Tovi Grossman

Ravin Balakrishnan

Dynamic Graphics Project Lab Department of Computer Science University of Toronto www.dgp.toronto.edu

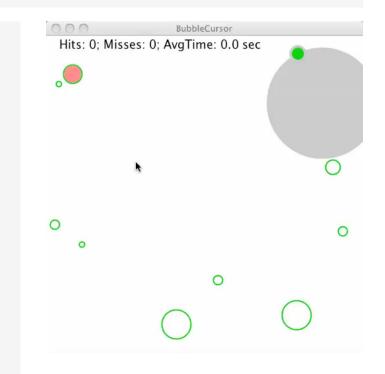
VARIABLES FOR THE BUBBLE CURSOR

VARIABLES

Independent variables

Cursor type (bubble, normal, area?) Target Distance Target Width

Dependent variables


Movement Time Error Rate User Satisfaction

Control variables

Color scheme, input device, screen size

Random variables

Location, environment, Attributes of subjects Age, gender, handedness, ...

Conducting studies online vs. in person strongly influences which variables are controlled and which are random.

GOALS

Internal validity

Manipulation of IV is cause of change in DV Requires eliminating confounding variables (turn them into IVs or RVs) Requires that experiment is replicable

External validity

Results are generalizable to other experimental settings **Ecological validity** – results generalizable to real-world settings

Confidence in results

Statistics

EXPERIMENTAL PROTOCOL

What is the task? (must reflect hypothesis!) What are all the combinations of conditions? How often to repeat each combination of conditions? Between subjects or within subjects Avoid bias (instructions, ordering, ...)

NUMBER OF CONDITIONS

Consider all combinations to isolate effects of each IV (factorial design) (3 cursor types) * (3 distances) * (3 widths) = 27 combinations

Adding levels or factors can yield lots of combinations!

REDUCING NUMBER OF CONDITIONS

Vary only one independent variable leaving others fixed

Problem: ?

REDUCING NUMBER OF CONDITIONS

Vary only one independent variable leaving others fixed

Problem: Will miss effects of interactions

OTHER REDUCTION STRATEGIES

Run a few independent variables at a time If strong effect, include variable in future studies Otherwise pick fixed control value for it

Fractional factorial design

Procedures for choosing subset of independent variables to vary in each experiment

CHOOSING SUBJECTS

Pick balanced sample reflecting intended user population

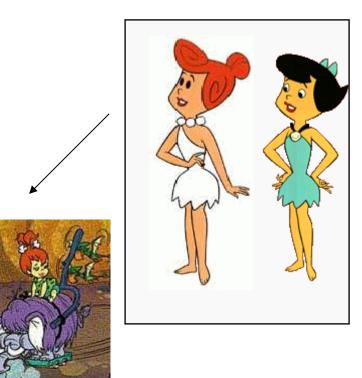
Novices, experts

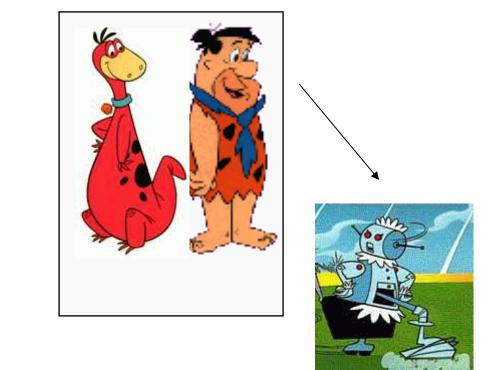
Age group

Sex

••••

Example

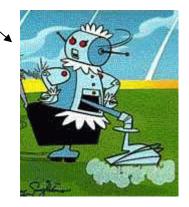

12 non-colorblind right-handed adults (male & female)

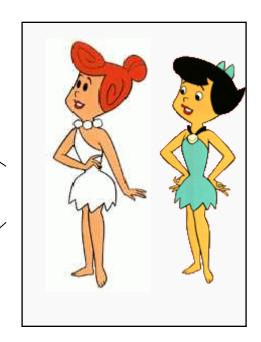

Population group can also be an IV or a controlled variable What is the disadvantage of making population a controlled var?

BETWEEN SUBJECTS DESIGN

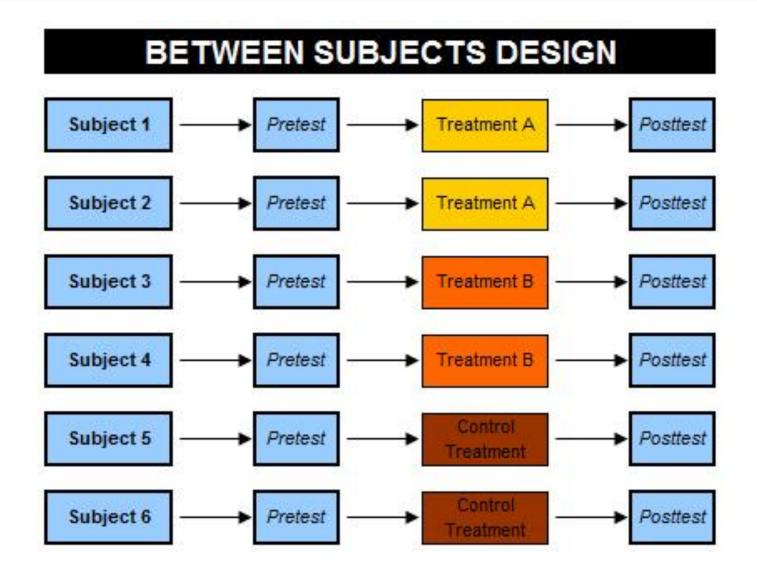
Wilma and Betty use one interface

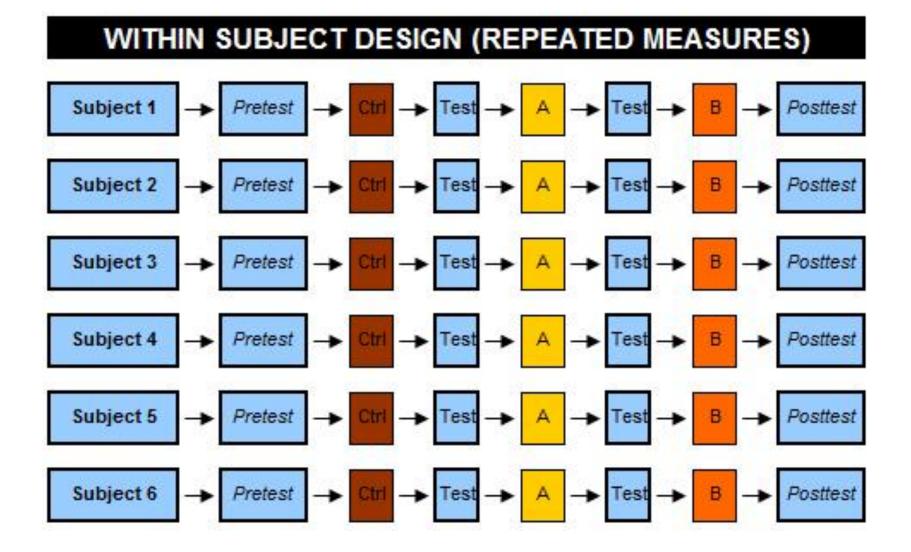
Dino and Fred use the other




WITHIN SUBJECTS DESIGN

Everyone uses both interfaces





BETWEEN SUBJECTS DESIGN

WITHIN SUBJECTS DESIGN

Within Subjects

A group of people sees the test signs.

Between Subjects

One group of people sees one set of the test signs, and a different group sees another set.

BETWEEN VS. WITHIN SUBJECTS

Between subjects

Each participant uses one condition

- +/- Participants cannot compare conditions
- + Can collect more data for a given condition
- Need more participants

Within subjects

All participants try all conditions

- + Compare one person across conditions to isolate effects of individual diffs
- + Requires fewer participants
- Fatigue effects
- Bias due to ordering/learning effects

WITHIN SUBJECTS: ORDERING EFFECTS

In within-subjects designs ordering of conditions is a variable that can confound results Why?

Turn it into a random variable

. . .

Randomize order of conditions across subjects Counterbalancing (ensure all orderings are covered) Latin square (partial counterbalancing)

RUN THE EXPERIMENT

Always pilot it first!

Reveals unexpected problems Can't change experiment design after starting it

Always follow same steps – use a checklist

Get consent from subjects

Debrief subjects afterwards