
CS160 Section 7
10-07-2015

Android Backend & Intro to Illustrator

Agenda
• Administrivia

• Android Bits & Pieces

• Intro to Illustrator

• Flowcharting a Wear app

• Flowchart to Code implementation

Administrivia
• PROG2: YourFault due Friday, 10/16

• DESIGN4: Project idea due Friday, 10/16

• RR5: Due Thursday, 10/15

• Midterm: Thursday, 10/22

• API doc updated with Twitter API

Android Bits & Pieces

Intents
• Asynchronous messages that allow Android components

to request functionality from other components

• After defining an intent, send it to the Android system

• Starting an activity from another activity:
Intent i = new Intent(this, ActivityTwo.class);
startActivity(i);

startActivity(Intent) to launch an Activity
broadcastIntent(Intent) to send to any interested
BroadcastReceiver components
startService(Intent)to communicate with a background Service.

Data Transfer with Intents
• Intents can contain data in the form of a Bundle (using key-value pairs)

• Adding data to an intent:

• Retrieving data from an intent
Bundle extras = getIntent().getExtras();
if (extras == null) {
 return;
}
// get data via the key
String value1 = extras.getString(Intent.EXTRA_TEXT);
if (value1 != null) {
 // do something with the data
}

Intent i = new Intent(this, ActivityTwo.class);
i.putExtra("Value1", “Value one for ActivityTwo ");
i.putExtra("Value2", "Value two ActivityTwo");
startActivity(i);

Android & RESTful APIs
• High level approach:

• Create HttpURLConnection

• Make a GET/POST request

• Store response in string

• Close connection

• Parse response using JSONObject

HttpURLConnection
1. Create your URL
URL url = new URL(“http://www.example.com/?exampleparam=10-09-2015”);

2. Open your Connection
HttpURLConnection connection = (HttpURLConnection) MyURL.openConnection()

3. Read the response
InputStream in = new BufferedInputStream(connection.getInputStream());
BufferedReader reader = new BufferedReader(new InputStreamReader(in));
StringBuilder sb = new StringBuilder();
String line;
while ((line = r.readLine()) != null) {
 sb.append(line);
 }
stream = sb.toString();

4. Disconnect
urlConnection.disconnect();

JSON Parsing
• Two forms of storage: key-value pairs, arrays
• Create JSONObject from string

• Get String

• Get nested JSONObject

• Parsing a JSONArray

JSONObject jObj = new JSONObject(result_str);

String surname = jObj.getString("surname");

JSONArray jArr = jObj.getJSONArray("list");
for (int i=0; i < jArr.length(); i++) {
 JSONObject obj = jArr.getJSONObject(i);

}

JSONObject subObj = jObj.getJSONObject("address");
String city = subObj.getString("city");

 Intro to

Illustrator Workflow: Artboards

• Analogy: Pieces of paper on a desk

• For prototypes: One artboard/screen

• Artboard Tool

• Artboard Panel

Must-Know Commands

• Alt to copy

• Shift to constrain proportions while resizing

• Ctrl+G to group elements together

Selection vs. Direct Selection Tool

• Selection Tool (V)

• Move, resize, modify proportions of elements

• Direct Selection Tool (A)

• Modify paths within elements

Shapes
• Shapes

• Lines

• Attributes: Fill & Stroke

Activity: Flowcharting
Mobile + Wear

Cuckoo Clock
• A cuckoo clock is a typically pendulum-regulated

clock that strikes the hours with a sound like a
common cuckoo's call.

• This watch app triggers images of different cuckoo
birds to appear at the strike of each hour.

• We’ll be creating a flowchart of the backend
structure of this app.

Assets

CODE: http://tinyurl.com/cs160-cuckoo-
alt/cs160-cuckoo-alt
AI: http://tinyurl.com/cs160sec7

http://tinyurl.com/cs160sec7

Assets Walkthrough
Flowchart elements Colors Transition Design

Assets Walkthrough
Watch Screens GesturesPhone &

Brainstorm

• Which backend components will we be using for
this watch app?

Brainstorm

• Backend components:

• 3 Watch screens

• One service + API talking

• Notification Process

• Activity: Flowchart this!

Example Implementation
Walkthrough: Screens & Gestures

!
LISTENING FOR CUCKOOS!

Example Implementation
Walkthrough: Service and Notification

OPEN THE PHONE APP
TO START LISTENING FOR

THE CUCKOOS!

THE CUCKOOS ARE SILENT!
RESTART THE APP :*(

9AM

CLOCK ACTIVITY

Shows a cuckoo bird the current hour.

MAIN ACTIVITY

Homelanding page.

FAIL ACTIVITY

Something went wrong :*(

WATCHLISTENERSERVICE

Listens for messages from the Wear Data
Layer API.

Example Implementation
Walkthrough: Flow

OPEN THE PHONE APP
TO START LISTENING FOR

THE CUCKOOS!

time: “9am”
cuckoo: [image/png]

Cuckoo Clock App
is opened

x sec
 NTKS

TIMEWATCHER SERVICE

Every x seconds, the TimeWatcher
asks the National Time Keeping Service
what time it is.

RUNS STICKY IN THE BACKGROUND

CLOCK ACTIVITY

Shows a cuckoo bird the current hour.

MAIN ACTIVITY

Homelanding page.

FAIL ACTIVITY

Something went wrong :*(

STARTS
THE CUCKOOS ARE SILENT!

RESTART THE APP :*(

9AM

WATCHLISTENERSERVICE

Listens for messages from the Wear Data
Layer API.

STARTS

WearDataLayer Message: [Success, Fail] + Hour

!
LISTENING FOR CUCKOOS!

MOBILE

WEAR

Cuckoo Clock WearApp
is opened

Flowchart to Code

Phone Activity to Phone
Service

• Instantiate an intent with myService.class as a
parameter

• startService runs the service specified in the
intent

Intent i = new Intent(getBaseContext(), FastTimeWatcherService.class);
startService(i);

Using an HTTP API in the
Service

• In this example we data from a server via bare
URL, so we setup an HttpURLConnection.
Fabric gives us a nice Java wrapper instead.

• In this example we get super simple raw text
instead of in a JSON format. With Twitter, you get
JSON that you have to parse.

urlConnection = (HttpURLConnection) url.openConnection(); 
urlConnection.connect(); 
InputStream in = urlConnection.getInputStream(); 
Scanner scanner = new Scanner(in); 
mTimeResponse = scanner.nextLine(); //read a single line from scanner object

Phone Service to
WatchListenerService

• WatchListenerService is always on. We do this by
making it a BIND_LISTENER in the manifest.

• Sender instantiates a GoogleApiClient object and
we define the sendMessage method. Call it when
it’s cuckoo time!
private void sendMessage(final String path, final String text) { 
 new Thread(new Runnable() { 
 @Override 
 public void run() { 
 // dense API code goes here 
 } 
 }).start(); 
}
sendMessage(START_ACTIVITY, hour)

We also send a path (String)
for the watch, which we need

to differentiate between
starting different watch

activities

WatchListenerService to
Watch Activity

• Check the MessageEvent for the path and decide what
to do

• Here there’s only one path: START_ACTIVITY = “/
start_activity”

• Create a new intent, but use
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_
TASK)

• Add pertinent information for the watch activity with
intent.putExtra and call startActivity

