CS160 Section 7

10-07-2015
Android Backend & Intro to lllustrator

Agenaa

Administrivia

Android Bits & Pieces
Intro to lllustrator
Flowcharting a Wear app

Flowchart to Code implementation

Administrivia

PROG2: YourFault due Friday, 10/16
DESIGN4: Project idea due Friday, 10/16
RR5: Due Thursday, 10/15

Midterm: Thursday, 10/22

APl doc updated with Twitter AP

Androld Bits & Pleces

INtents

* Asynchronous messages that allow Android components
to request functionality from other components

» After defining an intent, send it to the Android system

startActivity (Intent) to launch an Activity

broadcastIntent (Intent) tosend to any interested
BroadcastReceiver components

startService (Intent)to communicate with a background Service.

e Starting an activity from another activity:

Intent 1 = new Intent(this, ActivityTwo.class);
startActivity (1) ;

Data Transfer with Intents

e Intents can contain data in the form of a Bundle (using key-value pairs)

 Adding data to an intent:

Intent 1 = new Intent(this, ActivityTwo.class);
1.putExtra("Valuel", %“Walue one for ActivityTwo ");
1.putExtra ("Value2", "Value two ActivityTwo");
startActivity (1) ;

* Retrieving data from an intent

Bundle extras = getlIntent () .getExtras();
1f (extras == null) {
return;

}
// get data via the key

String valuel = extras.getString(Intent.EXTRA TEXT) ;
1f (valuel !'= null) {

// do something with the data
}

Android & RESTful APls

High level approach:

* Create HttpURLConnection
 Make a GET/POST request
e Store response in string

* (Close connection

* Parse response using JSONObject

HitpURLConnection

1. Create your URL

URL url = new URL (“http://www.example.com/?exampleparam=10-09-2015") ;

2. Open your Connection
HttpURLConnection connection = (HttpURLConnection) MyURL.openConnection ()

3. Read the response

InputStream in = new BufferedInputStream(connection.getInputStream()):;
BufferedReader reader = new BufferedReader (new InputStreamReader (in));
StringBuilder sb = new StringBuilder();
String line;
while ((line = r.readLine()) != null) {

sb.append(line) ;

}

stream = sb.toString/();

4. Disconnect

urlConnection.disconnect () ;

JSON Parsing

Two forms of storage: key-value pairs, arrays
Create JSONODbject from string

JSONObject JObj = new JSONObject (result str);

Get String

String surname = JObj.getString ("surname");

Get nested JSONODbject

JSONObject subObj = jObj.getJSONObject ("address") ;
String city = subObj.getString("city"):;

Parsing a JSONArray

JSONArray JArr = J0Obj.getJSONArray ("list");
for (int 1=0; 1 < jJArr.length(); 1i++) {
JSONObject obj = jArr.getJSONObject (1)

lllustrator Workflow: Artboards

Analogy: Pieces of paper on a desk
For prototypes: One artboard/screen

Artboard Tool EER

Artboard Panel

Must-Know Commands

e Altto copy
e Shift to constrain proportions while resizing

e Ctrl+G to group elements together

Selection vs. Direct Selection Tool

e Selection Tool (V)

 Move, resize, modify proportions of elements
* Direct Selection Tool (A)

 Modify paths within elements

Shapes
e Shapes E

+ Lines

9
o Attributes: Fill & Stroke I:]'

- Vaad

Activity: Flowcharting
Mobile + Wear

Cuckoo Clock

* A cuckoo clock is a typically pendulum-regulated
clock that strikes the hours with a sound like a
common cuckoo's call.

* This watch app triggers images of different cuckoo
birds to appear at the strike of each hour.

 We'll be creating a flowchart of the backend
structure of this app.

Assets

CODE: http://tinyurl.com/cs160-cuckoo-
alt/cs160-cuckoo-alt

Al: http://tinyurl.com/cs160sec/

http://tinyurl.com/cs160sec7

Assets Walkthrough

Flowchart elements Colors Transition Design
Process o
< Start/Stop) -------------
ﬁ
5 -
Disk
ﬁ
~
ﬁ
Documen t 3mm
v/ﬁ l

Assets Walkthrougn

Phone & Watch Screens Gestures

O
H &8

SR D

9 _
- By I e

- VO

NECRC

S
0
S - ob

......

Brainstorm

* Which backend components will we be using for
this watch app?

Brainstorm

 Backend components:
* 3 Watch screens
* One service + API talking
* Notification Process

e Activity: Flowchart this!

Example Implementation
Walkthrough: Screens & Gestures

Example Implementation
Walkthrough: Service and Notification

Listens for messages from the Wear Data
Layer API.

OPEN THE PHONE APP

TO START LISTENING FOR
THE CUCKOOS!

w3

‘ Homelanding page. \ ‘ Something went wrong :*(\ ‘ Shows a cuckoo bird the current hour. \

Example Implementation
Walkthrougn: Flow

[]
LISTENING FOR CUCKOOS!

M O BI L E Cuckoo Clock App

is opened

STARTS —} Every x seconds, the TimeWatcher

asks the National Time Keeping Service
what time it is.

RUNS STICKY IN THE BACKGROUND

!

Cuckoo Clock WearApp
is opened
Listens for messages from the Wear Data @y

l Layer API.

OPEN THE PHONE APP

4

{E CUCKOOS ARE SILENT!
RESTART THE APP :*(

TO START LISTENING FOR
THE CUCKOOS! ' STARTS
7 O M gy R
J time: “9am”
cuckoo: [image/png]

Homelanding page. Something went wrong :*(Shows a cuckoo bird the current hour.

Flowchart to Code

Phone Activity to Phone
Service

e [nstantiate an intent with myService.class as a
parameter

e startService runs the service specified in the
intent

Intent i = new Intent(getBaseContext(), FastTimeWatcherService.class);
startService(i);

Using an HTTP APl in the
Service

* In this example we data from a server via bare
JRL, so we setup an HttpURLConnection.
-abric gives us a nice Java wrapper instead.

* |n this example we get super simple raw text
instead of in a JSON format. With Twitter, you get

JSON that you have to parse.

urlConnection = (HttpURLConnection) url.openConnection();

urlConnection.connect();
InputStream in = urlConnection.getInputStream();
Scanner scanner = new Scanner(in);

= scanner.nextLine();

Phone Service to
WatchListenerService

 WatchListenerService is always on. We do this by
making it a BIND LISTENER in the manifest.

e Sender instantiates a GoogleApiClient object and
we define the sendMessage method. Call it when
t's cuckoo time!

private void (final String , final String) A
new Thread(new Runnable() {
@Override

public void () {

} // dense API code goes here We also send a path (String)

for the watch, which we need

} Fstartl); / to differentiate between

sendMessage hour) starting different watch
activities

WatchlListenerService to
Watch Activity

Check the MessageEvent for the path and decide what
to do

Here there’s only one path: START_ACTIVITY = “/
start_activity”

Create a new intent, but use
intent.addFlags(Intent.FLAG ACTIVITY NEW
TASK)

Add pertinent information for the watch activity with
intent.putExtra and call startActivity

