
CS160: Section 3
Intro to Android Wear

Sept 11, 2015

Agenda
• Affordances (8m)

• Wear design guidelines (10m)

• Activities, Services, Threads (12m)

• Setting up the wear emulator (17m)

Admin
• Programming 1 due at midnight!

• Get your phones by 9/14 - 5.0 Lollipop

• Reading Response 3: Due Thurs 9/17

• Group petition: Due Fri 9/18

Affordances
• “Perceived and actual properties of the thing” - Don

Norman

• How you use an object

• Ex: handles afford pulling, glass affords breaking,
balls afford bouncing

• Signifiers: physical object itself

• Ex: the flat bottom of the chair is signifier which
affords sitting

Look around you: affordances

Design Principles for Wear

https://developer.android.com/design/wear/principles.html

• Focus on not stopping the
user and all else will follow

• 5 second interactions

• Design for big gestures

• No more than 3 items

https://developer.android.com/design/wear/principles.html

Design Principles for Wear

https://developer.android.com/design/wear/principles.html

• Do one thing, really fast

• Design for the corner of the eye

• Don’t be a constant shoulder tapper

https://developer.android.com/design/wear/principles.html

UI Patterns for Wear
• Cards

• Notifications

The Notification

Left swipe = more info Right swipe = dismiss

Up & down
Scroll thru

notifications

More UI Guidelines
• Separate info into chunks

• Use clear, bold typography

• Keep notifications to a minimum

• Use consistent branding and color

• Omit needless text: Less is more

• User feedback: confirmation animations

You’re shopping for groceries at Berkeley Bowl.
We’re in the future with great GPS technologies
that know where grocery items are in the store.
Storyboard a user flow for a watch only app to
make grocery shopping fast and convenient.

Activities and Services
Organizing your App’s Code

13

Review Related Terms

What does it mean for a process to run in the foreground?
When it runs in the background?

Brainstorm examples of each with a partner.
Take 2 minutes for this.

14

Let’s Review Your Answers

15
:30

Defining Activity

• An Activity is an application component that provides a
screen with which users can interact in order to do
something, such as dial the phone, take a photo, send
an email, or view a map.

• Each activity is given a window in which to draw its user
interface.

From Android Developers Guide

16

Defining Service

• A Service is an application component that can perform
long-running operations in the background and does not
provide a user interface

• A component can bind to a service to interact with it and
even perform interprocess communication (IPC)

From Android Developers Guide This is an awesome document.
Seriously, you should get familiar with it.

17

Choosing Activities vs. Services

• When programming Android, most of the Java files you make will be
either an activity or a service

• Make an activity if:
• The user needs to see it

• Make a service if:
• it’s mechanical work unrelated to a View or
• other applications have want to access it or
• it will block the UI thread from running

18

Your Turn
Do I implement an activity or a service when I want to...
1. Make a form for entering medical information and submitting to a

web service
2. Perform some numeric computation and save the results to SQL
3. Decrypt a message and launch a notification when finished
4. Implement a media player to show movies
5. Poll temperature and wake up the device when the temperature

drops below 32
Pair up, justify your reasoning, and discuss for 3 minutes.

19

Your Turn
Do I implement an activity or a service when I want to...
1. Make a form for entering medical information and submitting to a

web service
2. Perform some numeric computation and save the results to SQL
3. Decrypt a message and launch a notification when finished
4. Implement a media player to show movies
5. Poll temperature and wake up the device when the temperature

drops below 32

Let’s Review 20
:40

How is this Related to Foreground and Background?
Let’s get 2 people’s thoughts on this.

21

How is this Related to Foreground and Background?
In general terms, activities are what is in the “foreground” for both
users and the program execution -- the user can see it, and it runs
on the main UI thread.
Services are more like “background” work, and can run on threads
that are not the main UI thread.

22

Implementing a Service
public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 // Kick off new work to do
 }

 @Override
 public IBinder onBind(Intent intent) {
 // Return a binder to this service
 }

} 23

Implementing a Service
public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 // Kick off new work to do
 }

 @Override
 public IBinder onBind(Intent intent) {
 // Return a binder to this service
 }

} 24

All Services extend the base class “Service”

Implementing a Service
public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 // Kick off new work to do
 }

 @Override
 public IBinder onBind(Intent intent) {
 // Return a binder to this service
 }

} 25

onStartCommand gets called when you
start a service with the startService()
method of an activity or service

Implementing a Service
public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 // Kick off new work to do
 }

 @Override
 public IBinder onBind(Intent intent) {
 // Return a binder to this service
 }

} 26
You can also ‘bind’ to a service from another application. Basically, this
method let’s us call methods on this service from other applications.
But let’s ignore it for now.
You need to override it, but you can just return null for the time being.

Implementing a Service
public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 // Kick off new work to do
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null; // :D
 }

} 27
You can also ‘bind’ to a service from another application. Basically, this
method let’s us call methods on this service from other applications.
But let’s ignore it for now.
You need to override it, but you can just return null for the time being.

Let’s Write a Service Together
A service that adds together 2 numbers and outputs them to the log
using the Log utility.

28
:50

Preparing and Running a Service

<application ... >
 <!-- ... -->
 <service android:name=".MyService" />
 <!-- ... -->
</application>

startService(new Intent(this, MyService.class));

AndroidManifest.xml

MainActivity.java

29

You need to do add the service
to the manifest before it can be
called from anywhere else.

Running in a new Thread
@Override
public int onStartCommand(Intent intent, int flags,
 int startId) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 Log.i("tag", "Work");
 }
 }
 }).start();
 return START_STICKY;
} 30

Don’t slow down the main
thread. We have to
explicitly create a new
thread.

Running in a new Thread
@Override
public int onStartCommand(Intent intent, int flags,
 int startId) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 Log.i("tag", "Work");
 }
 }
 }).start();
 return START_STICKY;
} 31

Don’t slow down the main
thread. We have to
explicitly create a new
thread.
A Runnable is an object
that encapsulates a block
of code to be run at a later
time.

Running in a new Thread
@Override
public int onStartCommand(Intent intent, int flags,
 int startId) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 Log.i("tag", "Work");
 }
 }
 }).start();
 return START_STICKY;
} 32

Don’t slow down the
main thread. We have to
explicitly create a new
thread.
A Runnable is an object
that encapsulates a
block of code to be run
at a later time.
By making a Thread and
calling its “start” method,
we run this code in a
new thread.

Running in a new Thread
@Override
public int onStartCommand(Intent intent, int flags,
 int startId) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (true) {
 Log.i("tag", "Work");
 }
 }
 }).start();
 return START_STICKY;
} 33

Don’t slow down the
main thread. We have to
explicitly create a new
thread.
A Runnable is an object
that encapsulates a
block of code to be run
at a later time.
By making a Thread and
calling its “start” method,
we run this code in a
new thread.

(This return code here means
to restart the service when it
fails.)

What Did We Have to Add to get a Service to Run in Its
Own Thread?

34

There were 2 classes involved

Closing Remarks
Giving parameters to an Activity or Service

Know those Intents we keep making?
Look up Intent.putExtra()

Getting data back from activities
Look up startActivityForResult() and
onActivityResult()

35

Closing Remarks
Giving parameters to an Activity or Service

Know those Intents we keep making?
Look up Intent.putExtra()

Getting data back from activities
Look up startActivityForResult() and
onActivityResult()

Can a service listen for events?

36

Setting up the wear emulator

Setting up the wear emulator

Setting up the wear emulator

Setting up the wear emulator

Setting up the wear emulator

Setting up the wear emulator

Follow the instructions to get
to know the basic wear
gestures:

● Swipes

● Cards

● Actions

● Dismissing Cards

Genymotion: Installing Play
Store & SDK

• Get dependencies for Wear and Play Store
• Google Apps APKs
• Android Wear APK

• Note: authenticate at own risk; if queasy, make
new unconnected Google account for this
assignment

http://stackoverflow.com/questions/17831990/how-do-you-install-google-frameworks-play-accounts-etc-on-a-genymotion-virt
http://www.apkmirror.com/apk/google-inc/android-wear/android-wear-1-1-1-1867902-android-apk-download/

Drag and drop both the Google Apps zip and the  
Android Wear SDK into the Genymotion window to
install. You might have to restart in between; restart the
app after installing both.

Click Wear
Notification

Sign In to
Google

Update
Play

Services

Open
Android

Wear and
Connect

Pair with
Emulator

Pairing Genymotion & wear

Do this every time your network restarts  
(e.g., when you wake your computer up

from sleep)

Type these two commands

adb gateway

• adb notes: if adb returns command not found, try adding its to your PATH (in
~/.bash_profile)

• if that doesn’t work, you can cd to where adb was installed (most likely ~/
Library/Android/sdk/platform-tools) and run ./adb devices from there

In summary
• Download the Wear Emulator

• Get familiar with the Wear Emulator

• Get Genymotion for Android 5.1.0

• Install Google Apps and Wear APKs to the
Genymotion Emulator

• Start Wear app and connect to Wear emulator

• Open up a gateway via the command line

