
Message Passing & APIs
Section 05 // September 25th, 2015

Tricia Fu // OH Monday 9:30 - 10:30am // triciasfu@berkeley.edu

 CS 160 User Interface Design

mailto:triciasfu@berkeley.edu

Administrivia

Brainstorm Discussion

Message Passing Between Wear and Mobile

Twitter API

Agenda

1

2

3

4

Administrivia

Design Assignment 02

Design Assignment 03

Programming Assignment 02

Phones!

Due October 1st by 10:30am

Due October 1st by 10:30am

Due October 16th by 11:59pm

Last day TAs are helping with emulator setup next
Thursday 10/1

This will be the last painful Android
section! Yay!

Brainstorm Discussion

How did it go?

What target audiences did you think about?

Cool ideas?

Feasible within the scope of the class

Progress?

Action Items:

Get to know each other!

Find common causes that you care about

Discuss your schedules

Team Development

Bringing it back — Critiques

• “Unlike a brainstorming meeting, where the goal
is to come up with new ideas, a critique meeting is
focused on evaluating a set of existing ideas, and
possibly identify future directions or changes.”

• When are these performed?

• Why are we discussing this now?

• Learn to be critical!

Design Critique

Activity — Group Critique

• Discuss with the person next to you one problem that you might
see with each of these brainstormed smartwatch ideas, and how
you might modify it to be better.

• Music Smartwatch App

• Restaurant Smartwatch App for Waiters

• Safety Notification App

• Pet Tracking Smartwatch App

• Parking App

Wear-Handheld Communication

• Wearable Data Layer (WDL): a communication
channel between your handheld and wearable
apps.

• “The data layer APIs are the only ones you should use
to set up communication between wearable and
handheld” - Developers Guide (enlighten yourself)

The Wearable Data Layer

https://developer.android.com/design/wear/principles.html

https://developer.android.com/design/wear/principles.html

Main Guide
http://developer.android.com/training/wearables/data-layer/

index.html

The following slides show a simplified version!

http://developer.android.com/training/wearables/data-layer/index.html

Wear to Handheld in 5 Steps

Wear to Handheld in 5 Steps

Wear Handheld

1. Broadcast capability C

2. Initialize Google API
Client

3. Discover node N with
capability C

4. Send message M to
node N

5. Handle message M

Step 1

Listen up, world:
I can do this
important thing.

Create a wear.xml with the capability

<resources>
 <string-array name="android_wear_capabilities">
 <item>do_stuff</item>
 </string-array>
</resources>

Do this in the mobile app.
Make the file at res/values/wear.xml

Name of capability

Steps 2 - 4: Send a Message

Is there anyone out
there?

I’ve got something to
say!

Step 2: Send a Message

GoogleApiClient: the main entry point for any of the
Google Play services APIs
APIs include:

• CapabilityAPI: find nearby nodes with a
“capability” (e.g., the handheld with the
capability “do_stuff”)

• MessageAPI: sends messages

this.mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new
GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 // Do something
 }
 @Override
 public void onConnectionSuspended(int i) {
 // Do something
 }
 })
 .addOnConnectionFailedListener(new
GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
connectionResult) {
 // Do something
 }
 })
 .addApi(Wearable.API)
 .build();
this.mGoogleApiClient.connect();

We connect specifically to the Wearable API

We make an API Client builder,

and then build the client.Creating a Google API

this.mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new
GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 // Do something
 }
 @Override
 public void onConnectionSuspended(int i) {
 // Do something
 }
 })
 .addOnConnectionFailedListener(new
GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
connectionResult) {
 // Do something
 }
 })
 .addApi(Wearable.API)
 .build();
this.mGoogleApiClient.connect();

Creating a Google API

With the exception of
“onConnected”, you can

leave these blank

We make callbacks that
say what to do when

we connect to the API,
and when that

connection changes.

Make sure to run connect(), or else no
connection will be made and the

‘onConnected’ callback will never be
run.

Finding Nodes with Capabilities
CapabilityApi.GetCapabilityResult capResult =

Wearable.CapabilityApi.getCapability(

 mGoogleApiClient, CAPABILITY_NAME,

 CapabilityApi.FILTER_REACHABLE)

.await();

Remember the capability the handheld is broadcasting from its wear.xml.
Now we have to find the handheld by findings what nodes are broadcasting
the capability.

The result of the call contains, among other things, a list of
Nodes with the capability that was asked for.

Use the CapabilityApi
from the Google Play
Services APIs to find

nodes with capabilities

This is the Google API
client we created in Step
2. It’s needed for the call

for nodes with the
capability. Search for a specific capability…

on nodes that are “reachable” or nearby

Step 3: Discovering the Handheld

Node: a connected device on the network
MessageApi: a class for remote procedure call (RPC) or starting intents on
the wearable from the handheld or vice versa

Wearable.MessageApi.sendMessage(

 mGoogleApiClient, nodeId,

RECEIVER_SERVICE_PATH, new byte[3]

);

This time we use the MessageApi
instead of the CapabilityApi

This is the data we’re sending.
I just added a placeholder of

empty bytes.

The nodeId is the address of the
receiver of the message.

You can find the nodeId of the receiver
from the “capability result” we got from

Step 3

RECEIVER_SERVICE_PATH is a string that specifies a
routine that will get invoked on the receiver’s side.

Set this value to a descriptive name of your choosing and
save it for Step 5.

Step 4: Sending the Message

What do I hear from
the world?

Step 5: Receive a Message

public class MyReceiverService extends WearableListenerService {

 private static final String RECEIVER_SERVICE_PATH = "/
receiver-service";

 @Override
 public void onCreate() {
 super.onCreate();
 }

 @Override
 public void onMessageReceived(MessageEvent messageEvent) {
 Log.i(TAG, "Got a message");
 }

}

WearableListenerService: a class for services that listen for
important data layer events

Extend WearableListenerService and override
onMessageReceived. Do your message reaction in

onMessageReceived.

Remember me from
Step 4? I’m the same

value, but on a different
device!

<service android:name=".MyReceiverService" >
 <intent-filter>
 <action android:name=

"com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
</service>

Name of our listener service

This intent-filter stuff lets incoming
messages notify our

WearableListenerService that they’ve
arrived.

Finally, update your Manifest!

Fabric + Twitter API

API Calls

• Treat all of Twitter’s data as a Model in MVC

• Receive data in JSON format

• Calls are typically asynchronous

API Calls

API Calls

getTweet(tweetId, callback { … });

callback(tweetData) {
 if (success) { print(tweetData); }
 if (fail) {print(“failure!”);}
}

StatusesService statusesService = twitterApiClient.getStatusesService();

statusesService.show(524971209851543553L, null, null, null, new
 Callback<Tweet>() {
 @Override
 public void success(Result<Tweet> result) {
 //Do something with result, which provides a Tweet in result.data
 }

 public void failure(TwitterException exception) {
 //Do something on failure
 }
});

Create a service from the TwitterCore module

Sends a request to Twitter for a tweet with a given ID

Code that runs once Android receives a response eventually

Example Call

• Create a developer
account, get an Android
Studio plugin

• Handles Authentication
(OAuth 2.0) for you

• Auto-adds ~setup code. No
need to copy/paste. Get
straight to API calls!

What does Fabric do for me?

Fabric Setup Video

https://drive.google.com/a/berkeley.edu/file/d/0B5xvBAe33kJkTHVXREZMaDNEZ0U/view?usp=sharing

CS160 API Reference Sheet
http://bit.ly/1YEEgrG

http://bit.ly/1YEEgrG

This concludes all the Android topics you
need to know!

See you next week!
Questions?

Tricia Fu // OH Monday 9:30 - 10:30am // triciasfu@berkeley.edu

 CS 160 User Interface Design

mailto:triciasfu@berkeley.edu

