

INFORMATION VISUALIZATION

2 MAR 2016

www.paulos.net

UNIVERSITY OF CALIFORNIA

ANNOUNCEMENTS Plan for PROG 02 Extension on PROG 02-B until Thur @ 11:59pm PROG 02-C coming out TODDAY — Due 11 Mar at 11:59pm DESIGN 05: Project Idea (due by 11:59pm on 18 Mar) Be bold and creative in your idea Next Week: User Studies and Data Analysis Midterm in two weeks Wed 2:30-4pm Section: Working with APIs — Please attend!!!

- Team meetings in section 11 Mar signup info on Piazza (4 of 5 must attend)

WHAT IS VISUALIZATION? Definition

- vision of something not actually present to the sight; a picture thus formed.
- 2. The action or process of rendering visible.

1. The action or fact of visualizing; the power or process of forming a mental picture or

EXAMPLES

STADIUMS	
DOWNTOWN	
BELLTOWN	
SOUTHLAKE	
SEATTLE CENTER	
LESONE	
CAPETOL HELL	
WEST LAKE	
RAINER WALLEY	
EASTLAKE	
UNIVERSITY	
HARBOR ISLAND	
OREEN LAKE	
RAVENNA	
PIONEER SQUARE	
BEACON HELL	
MOUNT BAKER	
	0

WHY DO WE CREATE VISUALIZATIONS?

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

THREE PRIMARY FUNCTIONS

Record information

Photographs, blueprints, ...

Support reasoning about information (analyze)

- Process and calculate
- Reason about data
- Feedback and interaction

Convey information to others (present)

- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data

RECORD INFORMATION

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

DRAWING: PHASES OF THE MOON Galileo's drawings of the phases of the moon from 1616

ANSWER QUESTION Gallop, Bay Horse "Daisy" [Muybridge 1884-86]

OTHER RECORDING INSTRUMENTS

Marey's sphygmograph [from Braun 83]

1.

Marey's sphygmograph in use, 1860. La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine.

TRUMENTS Jn 83]

SUPPORT REASONING

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

DATA IN CONTEXT: CHOLERA OUTBREAK

In 1864 John Snow plotted the position of each cholera case on a map. [from Tufte 83]

DATA IN CONTEXT: CHOLERA OUTBREAK

Tufte 83]

Used map to hypothesize that pump on Broad St. was the cause. [from

MAKE A DECISION: CHALLENGER

2 of 13 pages of material faxed to NASA by Morton Thiokol [from Tufte 1997]

5		ITZIORI OF C	-KING DAMAGE U	N SKA FIELD	JUINIS		
-		Cr	oss Sectional	View	Top	View	
ee AFT	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Location (deg)
61A LH Center Field** 61A LH CENTER FIELD** 51C LH Forward Field** 51C RH Center Field (prim)*** 51C RH Center Field (sec)***	22A 22A 15A 15B 15B	None NONE 0.010 0.038 None	None NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280 0.280	None 4.25 12.50 None	None NONE 5.25 58.75 29.50	36°66° 338°18° 163 354 354
41D RH Forward Field 41C LH Aft Field* 418 LH Forward Field	13B 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275
STS-2 RH Aft Field	28	0.053	116.0	0.280			90

"Hot gas path detected in putty. Indication of heat on O-ring, but no damage. **Soot behind primary O-ring. ***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking location of leak check port - 0 deg.

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT NEAR OR BEYOND THE PRIMARY O-RING.

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

BLOW BY HISTORY

- SRM-15 WORST BLOW-BY O 2 CASE JOINTS (80°), (110°) ARC
 - O MUCH WORSE VISUALLY THAN SRM-22

SRM 22 BLOW-BY O 2 CASE JOINTS (30-40°)

SRM-13 A, 15, 16A, 18, 23A 24A O NOZZLE BLOW-BY

OF A DING DAMAGE ON CON ETCLD JOINTS

	HISTOR	OF O (DEGRE	ES-F)	PERATURES
MOTOR	MBT	AMB	O-RING	WIND
Dm-+	68	36	47	IO MPH
Dm-2	76	45	52	10 mp4
Qm - 3	72.5	40	48	10 mPH
Qm - 4	76	48	51	10 m PH
SRM-15	52	64	53	10 MPH
5RM-22	77	78	75	10 MPH
SRM-25	55	26	29 27	10 MPH 25 MPH

MAKE A DECISION: CHALLENGER

Visualizations by booster rocket manufacturer of damage to O-rings [Tufte 97]

MAKE A DECISION: CHALLENGER

Visualizations drawn by Tufte show how low temperatures damage Orings [Tufte 97]

CONVEY INFORMATION TO OTHERS

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

PRESENT ARGUMENT: EXPORTS & IMPORTS

William Playfair 1786

TELL STORY: MOST POWERFUL BRAIN?

3 M	licros	oft Excel - animal.xls			_	
2)	Ele	Edit View Insert Format	Tools Data V	<u>V</u> indow <u>H</u> elp	-	8 ×
1911	A1	✓ f _x ID				
	A	В	C	D	E	1.
1	ID .	Name	Body Weight	Brain Weight		
2	1	Lesser Short-tailed Shrew	5	0.14		
3	2	Little Brown Bat	10	0.25		
4	3	Mouse	23	0.3		
5	4	Big Brown Bat	23	0.4		
6	5	Musk Shrew	48	0.33		
7	6	Star Nosed Mole	60	1		
8	7	Eastern American Mole	75	1.2		
9	8	Ground Squirrel	101	4		
10	9	Tree Shrew	104	2.5		
11	10	Golden Hamster	120	1		1
12	11	Mole Rate	122	3		
13	12	Galago	200	5		
14	13	Rat	280	1.9		
15	14	Chinchilla	425	6.4		
16	15	Desert Hedgehog	550	ileo ileo i		
17	16	Rock Hyrax (a)	750	12.3		
8	17	European Hedgehog	785	3.5		
19	18	Tenrec	900	2.6		
20	19	Arctic Ground Squirrel	920	5.7		
21	20	African Giant Pouched Rat	1000	6.6		
22	21	Guinea Pig	1040	5.5		
23	22	Mountain Beaver	1350	8.1		
24	23	Slow Loris	1400	12.5		
25	24	Genet	1410	17.5		
26	25	Phalanger	1620	11.4	ileo de pr	
-		animal /	14	1		FIL

TELL STORY: MOST POWERFUL BRAIN?

The Dragons of Eden [Carl Sagan]

TELL STORY: MOST POWERFUL BRAIN?

The Elements of Grasping Data [Cleveland]

	-3
Modern Man	
Dolphin	
Homo habilis	
Gracile Australopithecus	
Chimpanzee	
Baboon	
Crow	
Vampire Bat	
Wolf	
Gorilla	
Elephant	
Hummingbird	
Lion	
Rat	
Mole	
Opossum	
Blue Whale	
Saurornithoid	
Goldfish	
Ostrich	
Alligator	
Tyrannosaurus rex	
Coelacanth	
Eel	
Stegosaurus	
Brachiosaurus	
Diplodocus	
	h 1
	- 3

ATTENTION

"What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it."

~Herb Simon as quoted by Hal Varian in Scientific American September 1995

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	-11

DATA TYPES

Physical type (model)

Characterized by storage format Characterized by machine operations

Example:

bool, short, int32, float, double, string, ...

Abstract type

Provide (conceptual) descriptions of the data May be characterized by methods/attributes May be organized into a hierarchy

Example:

nominal, ordinal, quantitative, ...,

plants, animals, metazoans, ...

NOMINAL, ORDINAL & QUANTITATIVE

N - Nominal (labels)

Fruits: Apples, oranges, ...

O - Ordered

Quality of meat: Grade A, AA, AAA

Q - Quantitative

Real numbers

Ordered, with measurable distances, or amounts Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45) Physical measurement: Length, Mass, Temp, ...

S. S. Stevens, On the theory of scales of measurements, 1946

FROM DATA MODEL TO DATA TYPE

Data model 32.5, 54.0, -17.3, ... floats Conceptual model Temperature Data type Burned vs. Not burned (N) Hot, warm, cold (O) Continuous range of values (Q)

IMAGE

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	-11

VISUAL VARIABLES

Color Intensity

Jacques Bertin

INFORMATION IN POSITION

1. A, B, C are distinguishable

- 2. B is between A and C.
- 3. BC is twice as long as AB.

4. .: Encode quantitative variables (Q)

INFORMATION IN COLOR AND VALUE

Value is perceived as ordered

.:. Encode ordinal variables (O)

. Encode continuous variables (Q) [not as well] – can't tell distance

Hue is normally perceived as unordered ... Encode nominal variables (N) using color

d			

BERTINS' "LEVELS OF ORGANIZATION"

- N Nominal
- O Ordinal
- Q Quantitative

Position	Ν	0	Q
Size	Ν	0	Q
Value	N	0	Q
Texture	Ν	0	
Color	Ν		
Orientation	Ν		
Shape	N		

ESTIMATING MAGNITUDE

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

DETECTING BRIGHTNESS

Which is brighter?

DETECTING BRIGHTNESS

Which is brighter?

(128, 128, 128) (144, 144, 144)

JUST NOTICEABLE DIFFERENCES JND (Weber's Law) $\Delta S = k \frac{\Delta I}{I}$

Ratios more important than magnitude

Most continuous variations perceived in discrete steps

STEVEN'S POWER LAW

$S = I^p$

p < 1 : underestimate</pre> p > 1 : overestimate

[graph from Wilkinson 99, based on Stevens 61]

EXPONENTS OF POWER LAW

Sensation	Εχρο
Loudness	0.6
Brightness	0.33
Smell	0.55 (0
Taste	0.6 (Sc
Temperature	1.0 (C
Vibration	0.6 (25
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

[Psychophysics of Sensory Function, Stevens 61]

SUMMARY

We create visualizations to

Record information

Support reasoning about the information

Convey information to others

Choose the right mark for your data Position good for N, O, Q, but Hue best only for N

With careful design it is possible to display many dimensions at once

THE VALUE OF PROTOTYPING

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	11

BENEFITS OF PROTOTYPING

We know more than we can tell

Actions in the world outperform mental operations

The value of surprise

TACIT KNOWLEDGE

THE PURPOSE OF PROTOTYPING

What questions do prototypes answer? When and how should they be constructed?

Figure 2: Experiencing a train journey.

BE HUNARY -TRY TO FIND SOMETHING TO EAT

Three Stages of Prototyping (IDEO)

Prototypes for the Microsoft mouse From Moggridge, *Designing Interactions*, Ch2

PAPER PROTOTYPING

Towards Wizard of Oz Studies

DATA CONT	SW	PAUSE	BRK PROG	BRK
IF1	IF2	DFO	DF1	DF2
7	8	9	10	

MATERIALS

Large, heavy, white paper (11 x 17) 5x8 in. index cards Post-it notes Tape, stick glue, correction tape Pens & markers (colors & sizes) Transparencies (including colored) Scissors, X-acto knives, etc.

INTERFACE ELEMENTS

	Find + Replace	নিমি
	Find what:	F.J Must
Find & Replace	ল্পপ্ৰ	(Hore +)
Find what:	Find Next Geneel Lesst	
Seorch: [Att]6	□ Motch case □ Find whole words only □ Use wildcards □ Sounds like □ Find all word forms	

WIZARD OF OZ TESTING

A Wizard of Oz experiment is a research experiment in which subjects interact with a computer system that subjects believe to be autonomous, but which is actually being operated or partially operated by an unseen or seen human being.

CONSTRUCTING THE PROTOTYPE

Set a deadline Don't think too long - build it!

Draw a window frame on large paper

Draw at a large size, but use correct aspect ratio

- Put different screen regions on cards Anything that moves, changes, appears/disappears Use greeking to indicate text if necessary
- Ready response for any user action e.g., Have those pull-down menus already made
- Use photocopier to make many versions

User A

Test: Blood Analysis / Payment: Credit Card

NEED COMME

CONDUCTING A TEST

Three or Four testers (preferable)

Greeter - Puts users at ease & gets data

- Facilitator only team member who speaks Gives instructions & encourages thoughts, opinions
- **Computer** knows application logic & controls it Always simulates the response, w/o explanation
- **Observer(s)** Take notes & recommendations

Typical session should be approximately 1 hour Preparation, the test, debriefing

CONDUCTING A TEST (CONT.)

Greet

Get forms filled, assure confidentiality, etc.

Test

Facilitator explains how test will work Performs a simple task

Facilitator hands written tasks to the user Must be clear & detailed

Facilitator keeps getting "output" from participant "What are you thinking right now?", "Think aloud"

Observers record what happens

Avoid strong reactions:, frowning, laughing, impatience – biases the test

Designers should not lead participants

Let users figure things out themselves as much as possible Only answer questions if user remains stuck for a long time

CONDUCTING A TEST (CONT.) Debrief

Fill out post-evaluation questionnaire Ask questions about parts you saw problems on Gather impressions Thank participants

PREPARING FOR A TEST

Select your participants

Understand background of intended users Use a questionnaire to get the people you need Don't use friends or family

Prepare scenarios that are

Typical of the product during actual use Make prototype support these (small, yet broad)

Practice running the computer to avoid "bugs" You need every menu and dialog for the tasks All widgets the user might press Remember "help" and "cancel" buttons

WOZ is different from pre-built/canned functionality

WIZARD OF OZ TIPS

Rehearse your actions

Make a flowchart which is hidden from the user Make list of legal words for a speech interface Stay "in role"

You are a computer, and have no common sense, or ability to understand spoken English.

Facilitator can remind user of the rules/think-aloud approach if the user gets stuck

RECORD CRITICAL INCIDENTS Critical incidents are any unusual/interesting events

- Most of them are usability problems.
- They may also be moments when the user Got stuck Suddenly understood something Said "that's cool" etc.

USING THE RESULTS

Update task analysis and rethink design Rate severity & ease of fixing problems Fix both severe problems & make the easy fixes

Will thinking aloud give the right answers? Not always

with the facts

Try to avoid leading questions

- If you ask a question, people will always give an answer, even it is has nothing to do